Thursday 29 June 2017

The Indoor Radon Concentration within the Tunnels of the Cholula Pyramid Through a Nuclear Tracks Methodology

DOI
10.15415/jnp.2016.41008

AUTHORS

A. Lima Flores, R. Palomino-Merino, E. Espinosa, V. M. Casta ño, E. Merlo Juárez, M. Cruz Sanchez, G. Espinosa

ABSTRACT

Global organizations, including the World Health Organization (WHO), the Environmental Protection Agency of the United States (US-EPA) and the European Atomic Energy Community (EURATOM) recognize that radon gas as one of the main contributors to environmental radiation exposure for humans. Accordingly, a study and analysis of the indoors radon concentrate in the Cholula Pyramid contributes to understand the Radon dynamic inside of the Pyramid tunnels and to evaluate the radiological health risk to visitors, archaeologists, anthropologists and persons who spend extended periods inside the Pyramid. In this paper, the radon measurements along the Pyramid tunnels are presented. The Nuclear Track Methodology (NTM) was chosen for the measurements, using a close end-cup device developed at the Dosimetry Application Project (DAP) of the Physics Institute UNAM, following very well established protocols for the chemical etching and reading with the Counting Analysis Digital Imaging System (CADIS). The Cholula Pyramid consists of eight stages of constructions, each built in different periods of time. Cholula Pyramid is recognized as the pyramid with the largest base in the World, with 400 meters per side and 65 meters high. The tunnels of the pyramid were built in 1931 by architect Ignacio Marquina, with the aim of exploring and studying the structure. The results show an important indoor radon concentration in the measured tunnels, several times higher than levels recommended by United States Environmental Protection Agency (US-EPA). The recommendation will be to mitigate the radon concentration levels, in order to avoid unnecessary exposition to the people.

KEYWORDS

Indoor radon, radon concentration, Nuclear Track Methodology, Cholula pyramid

LINK: http://jnp.chitkara.edu.in/abstract.php?id=476#exactabstracts

REFERENCES

  • Childs, E. Teotihuacan ceramics, chronology and cultural trends. Distrito Federal: Insti-tuto Nacional de Antropología e Historia, (2001).
  • Cruz, M. Levantamiento topográfico de los túneles de la Gran Pirámide de Cholula. Proyecto de Integración Arqueológico, Histórico y Urbano de Cholula, Puebla. Puebla: Instituto Nacional de Antropología e Historia, (2002).
  • Espinosa, G. Trazas Nucleares en Sólidos. Distrito Federal: Universidad Nacional Autónoma de México, (1994).
  • Espinosa, G. & Gammage, R.B. Measurements methodology for indoor radon using passive track detectors. Appl. Radiat. lsot., 4, 719-723, (1993).
  • Espinosa, G., Manzanilla, L., & Gammage, R.B. Radon Concentration in the Pyramid of the Sun at Teotihuacan. Radiation Measurements. 28, 667-670, (1997). http://dx.doi.org/10.1016/S1350-4487(97)00161-3
  • Fieischer, R.L., Price, P.B. & Walker, R.M. Nuclear tracks in solids, principles and applications. Berkeley: University of California Press (1975).
  • Gammage, R.B. & Espinosa, G. Digital Imaging System for Track Measurements. Radiation Measurements. 28, 835, (1997). http://dx.doi.org/10.1016/S1350-4487(97)00193-5
  • Humboldt, A. Vistas de las cordilleras y monumentos de los pueblos indígenas de Amé-rica. Distrito Federal: Siglo XXI Editores, (1995).
  • Jiménez, W. El Enigma de los Olmecas. Distrito Federal: Cuadernos Americanos, (1942).
  • Matos, E. Excavaciones en la Gran Pirámide de Cholula (1931-1970). Resource Docu-ment. Arqueología Mexicana. http://www.arqueomex.com/ S2N3nProyecto115.html. Accessed 4 April 2016, (2012).
  • Marquina, I. Exploraciones en la pirámide de Cholula, Pue. Distrito Federal: Secretaría de Educación Pública, (1939).
  • Merlo, E. Cholula, la Roma de Mesoamérica. Resource Document. Arqueología Mex-icana. http://www.arqueomex.com/S2N3nCholula115.html. Accessed 4 April 2016, (2012).
  • Noguera, E. La cerámica arqueológica de Cholula. Distrito Federal: Editorial Guaranda, (1954).
  • Quinones, E. Codex Telleriano-Remensis: Ritual, Divination, and History in a Pictorial Aztec Manuscript. Texas: University of Texas Press, (1995).
  • Reyes, C. El altepetl, orígen y desarrollo. Construcción de la identidad regional náhuatl. Michoacán: El Colegio de Michoacán, (2000).
  • Simeon, R. Diccionario de la lengua náhuatl o mexicana. México: Siglo XXI Editores, (1977).
  • Solis, F. R., Uru-uela, M. G., Plunket, P., & Cruz, M. La Gran Pirámide de Cholula. Distrito Federal: Grupo Azabache, (2007).
  • Uru-uela, M. G., de Guevara, L. & Robles, M. A. Las subestructuras de la Gran Pirá-mide de Cholula. Viejos túneles, nueva tecnología, nuevos datos. Resource Document. Arqueo-logía Mexicana, (2012). http://www.arqueomex.com/S2N3nTuneles115.html. Accessed 4 April 2016.
  • US-EPA. Environmental Protection Agency Report No. EPA 400-R-92-011, (1992).

A Scaling Law for L-Shell X-Ray Production Cross Sections Induced by Impact of 4He+, 9Be2+, and N2+ Ions

DOI
10.15415/jnp.2016.41007

AUTHORS

Javier Miranda

ABSTRACT

Experimental results of L-subshell X-ray production cross sections induced by the impact of several ions heavier than protons were compiled in order to propose possible scaling laws. The ions of interest in this work are 4He+, 9Be2+, and 14N2+. A feasible universal scaling for the x-ray production cross sections of the Lα (L3M4 + L3M5) line is based on a reduced velocity parameter ξ R L. In this scheme, the experimental data follow well resolved curves for each ion. A similar scaling for the Lγ line (L2N4 + L1N2 + L1N3 + L1O3 + L1O2 + L2N1 + L2O4) is also recommended, based on a different reduced velocity parameter ξ R L1,2. These results appear to be useful for all the studied projectile-target combinations covered in this work, supporting the idea that more theoretical studies in this direction should be done. However, the behavior of the fitting does not seem to follow the previously observed one.

KEYWORDS

X-rays, cross sections, heavy ion impact, PIXE.

LINK: http://jnp.chitkara.edu.in/abstract.php?id=475#exactabstracts

REFERENCES

  • Batyrbekov, E., Gluchshenko, N., Gorlachev, I., Ivanov, I., and Platov, A. X-ray production cross section for K-, L- and M-shell by 14 MeV and 19.6 MeV nitrogen.Nucl.Instrum. Meth. B330, 86-90, (2014). http://dx.doi.org/10.1016/j.nimb.2014.04.003
  • Brandt W. and Lapicki, G. Energy-loss effect in inner-shell Coulomb ionization by heavy charged particles.Phys. Rev. A 23, 1717-1729, (1981). http://dx.doi.org/10.1103/PhysRevA.23.1717
  • Kamiya, M., Kinefuchi, Y., Endo, H., Kuwako, A., Ishii, K., and Morita, S. Projectile-energy dependence of intensity ratio of Lα to Ll x rays produced by proton and 3He impacts on Ho and Sm. Phys. Rev. A 20, 1820-1827, (1979). http://dx.doi.org/10.1103/PhysRevA.20.1820
  • Lapicki, G., Mehta, R., Duggan, J.L., Kocur, P.M., Price J.L., and McDaniel, F.D. Multiple outer-shell ionization effect in inner-shell X-ray production by light ions.Phys. Rev. A 34, 3813-3821, (1986). http://dx.doi.org/10.1103/PhysRevA.34.3813
  • Malhi, N.B. and Gray, T.J. Measurements of the L-shell X-ray production cross sections of Yb and Au by Li, Be, C, N, F, and Si bombardments.Phys. Rev. A44, 7199-7206, (1991). http://dx.doi.org/10.1103/PhysRevA.44.7199
  • Miranda, J., de Lucio O.G., and Lugo-Licona, M. X-ray production induced by heavy ion impact: challenges and possible uses. Rev. Mex. Fís. S53, 29-32, (2007).
  • Miranda, J. Evaluation of L-shell X-ray production cross sections by impact of He ions. AIP Conf. Proc. 1544, 101-106, (2013). http://dx.doi.org/10.1063/1.4813466
  • Miranda, J., Lugo, M., Murillo, G., Méndez, B., Díaz, R.V., López-Monroy, J., Aspiazu, J., Villase-or, P. L-shell x-ray production cross sections of selected lanthanoids by impact of 4He+, 7Li2+, 10B2+, 12C4+, 16O4+, and 19F3+ ions with energies between 0.50 Mev/u and 0.75 Mev/u, 13th International Conference on Particle Induced X-ray Emission (UFRGS, Porto Alegre, Brazil), (2013a).
  • Miranda, J., Murillo, G., Méndez, B., Díaz, R.V., López-Monroy, J., Aspiazu, J., Villase-or, P. L-shell X-ray production cross sections of selected lanthanoids by impact of 7Li2+ ions with energies between 3.50 MeV and 5.25 MeV. Rad. Phys. Chem. 83, 48-53, (2013b). http://dx.doi.org/10.1016/j.radphyschem.2012.09.023
  • Murillo, G., Méndez, B., López-Monroy, J., Miranda, J., and Villase-or, P. X-ray Production Cross Sections of Lanthanoids by impact of nitrogen ions. LVII NationalPhysicsCongress (Sociedad Mexicana de Física, Mexico), (2014).
  • Murillo, G., Méndez, B., Miranda, J., López-Monroy, J., and Villase-or, P. X-ray Production Cross Sections of Lanthanoids by impact of beryllium ions. LVIII NationalPhysicsCongress (Sociedad Mexicana de Física, Mexico) p. 14, (2015).
  • Pajek, M., Banaś, D., Braziewicz, J., Majewska, U., Semaniak, J.,Fijał-Kirejczyk, I., Jaskóła, M., Czarnacki, W., Korman, A.,Kretschmer, W.,Mukoyama, T., and Trautmann, D. Nucl. Instrum. Meth. B 363, 19-23, (2015). http://dx.doi.org/10.1016/j.nimb.2015.08.058
  • Pálinkás, J., Sarkadi, L., Schlenk, B., Török, I., Kálmán, G., Bauer, C., Brankoff, K., Grambole, D., Heiser, C., Rudolph, W., Thomas, H.J. Study of the L-shell ionisation of gold by 3.0-18.2 MeV nitrogen-ion bombardment. J. Phys. B 17, 131-145, (1984). http://dx.doi.org/10.1088/0022-3700/17/1/018
  • Sarkadi, L. and Mukoyama, T. Study of the L-shell ionisation of gold by 3.0- 18.2 MeV nitrogen-ion bombardment.J. Phys. B 13, 2255-2268, (1980). http://dx.doi.org/10.1088/0022-3700/13/11/017
  • Sarkadi,L. and Mukoyama, T. Systematic study of helium-induced L shell ionization cross sections.Nucl. Instr. and Meth. B 61, 167-174, (1991). http://dx.doi.org/10.1016/0168-583X(91)95456-N
  • Semaniak, J., Braziewicz, J., Pajek, M., Czyżewski, T., Jaskól, M., Haller, M., and Trautmann, D. L-subshell ionization of heavy elements by carbon and nitrogen ions of energy 0.4–1.8 MeV/amu.Phys. Rev. A 52, 1125-1136, (1995). http://dx.doi.org/10.1103/PhysRevA.52.1125
  • Šmit, Ž. and Lapicki, G. Energy loss in the ECPSSR theory and its calculation with exact integration limits.J. Phys. B 47, 055203, (2014). http://dx.doi.org/10.1088/0953-4075/47/5/055203

Theoretical Model to Estimate the Distribution of Radon in Alveolar Membrane Neighborhood

DOI
110.15415/jnp.2016.41006

AUTHORS

J. C. Corona, F. Zaldívar, L. A. Mandujan o-Rosas, F. Méndez, J. Mulia, D. Osorio-González

ABSTRACT

Radon is a naturally occurring radioactive gas which tends to concentrate indoors, easily emanates from the ground into the air, where it disintegrates and emits radioactive particles. It can enter the human body through breathing or ingesting mostly water. When radon inhaled, travels through the respiratory tract to alveoli where the majority is expelled into the environment. Moreover, when ingested in water, it passes into the intestine where it is absorbed and driven from the bloodstream to the lungs; in these organs, due to differences in partial pressures, it is transported to alveoli by simple diffusion process. When radon is not removed, it decays in short-lived solid disintegration products (218Po and 214Po) with high probability of being deposited in biological tissues, causing DNA damage because of the densely ionizing alpha radiation emitted. We propose a semi-empirical, smooth, and continuous pair potential function in order to model the molecular interactions between radon and lung alveolar walls; we use Molecular Dynamics (MD) to determine the gas distribution in an alveolar neighborhood wall, and estimate the quantity thereof it diffuses through the alveolar membrane as a concentration function.

KEYWORDS

Radon distribution; alveolar membrane; molecular dynamics; radon in alveoli

LINK:http://jnp.chitkara.edu.in/abstract.php?id=474#exactabstracts 

REFERENCES


  • Chen, J., Chen, Z., Narasaraju, T.,Jin, N. & Liu, L. Isolation of highly pure alveolar epithelial type I and type II cells from rat lungs. Laboratory Investigation. 84,727–735 (2004). http://dx.doi.org/10.1038/labinvest.3700095
  • Dobbs L.G., Gonzalez, R., Matthay, M.A., Carter, E.P., Allen, L. &Verkman, A.S. Highly water-permeable type I alveolar epithelial cells confer high water permeability between the airspace and vasculature in rat lung. Cell Biology. 95, 2991–2996 (1998). http://dx.doi.org/10.1073/pnas.95.6.2991
  • ] Hill, R. W., Wyse, G. A.& Anderson, M. (2012).Animal Physiology.3rd ed. Sinauer Associates, Inc. Publishers. Sunderland, Massachusetts.
  • Jason R. M. (2016).Prediction of Radon-222, Phase Behavior by Monte Carlo Simulation.J. Chem. Eng. Data. Article ASAP. doi: 10.1021/acs.jced.5b01002. http://dx.doi.org/10.1021/acs.jced.5b01002
  • Johnson, M. D.,Widdicombe, J. H., Allen, L.,Barbrys, P. & Dobbs, L. G. Alveolar epithelial type I cells contain transport proteins and transport sodium, supporting an active role for type I cells in regulation of lung liquid homeostasis. PNAS. 99(4), 1966-1971(2002). http://dx.doi.org/10.1073/pnas.042689399
  • Koulich V. V., Lage, J. L., Hsia, C. C. W. & Johnson, Jr, R. L. A porous medium model of alveolar gas diffusion. J. Porous Media, 2, 263–75 (1999). http://dx.doi.org/10.1615/JPorMedia.v2.i3.4
  • Koulich, V., Lage, JL., Hsia, C.C. W.& Johnson, R.L. Jr. Three-dimensional unsteady simulation of alveolar respiration. J Biomed Eng 124, 609–616 (2002).
  • National Academy of Sciences.(1999). Risk Assessment of Radon in Drinking Water. Committee on Risk Assessment of Exposure to Radon in Drinking Water, National Research Council. National Academy Press. Washington D.C.
  • Nussbaum, E. (1957). Radon Solubility in Body Tissues and in Fatty Acids. Report UR-503. Rochester, NY. University of Rochester.
  • Tchorz-Trzeciakiewicz, D. E. &Solecki, A. T. Seasonal variation of radon concentrations in atmospheric air in the NowaRuda area (Sudety Mountains) of southwest Poland. Geochemical Journal, 45, 455-461 (2011). http://dx.doi.org/10.2343/geochemj.1.0149

Wednesday 28 June 2017

Using Green Fluorescent Protein to Correlate Temperature and Fluorescence Intensity into Bacterial Systems

DOI
10.15415/jnp.2016.41005

AUTHORS

K. Beltrán, J. M. de Jesús-Miranda, J. A. Castro, L. A. Mandujano-Rosas, J. M. Paulin-Fuentes, D. Osorio-González

ABSTRACT

The unique and stunning spectroscopic properties of Green Fluorescent Protein (GFP) from the jellyfish Aequorea victoria, not to mention of its remarkable structural stability, have made it one of the most widely studied and used molecular tool in medicine, biochemistry, and cell biology. Its high fluorescent quantum yield is due to its chromophore, structure responsible of emitting green visible light when excited at 395 nm. Although it is noteworthy that there is enormous available information of the wonderful luminescent properties of GFP, the fact is that there are features and properties unexplored yet, particulary about its capabilities as molecular reporter in several biological processes. In this work, we used recombinant DNA technology to express the protein in bacteria; prepared the bacterial system both in liquid and solid media, and assembled an experimental set to expose those media to a laser beam; thereby we excited the protein chromophore and used emission spectroscopy in order to observe variations in fluorescence when the bacterial system is exposed to different temperatures.

KEYWORDS

green fluorescent protein; bacterial systems; bacterial temperature; spectroscopic properties

REFERENCES

  • Baker, M. Microscopy: Bright light, better labels. Technology feature. Nature. 478: 137-142. (2011). http://dx.doi.org/10.1038/478137a
  • Blow, N. Cell imaging: New ways to see a smaller world. Nature. 456: 825-828. (2008). http://dx.doi.org/10.1038/456825a
  • Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Green Fluorescent Protein as a Marker for Gene Expression. Science. 263(5148): 802-805. (1994). http://dx.doi.org/10.1126/science.8303295
  • Donner, J., Thompson, S., Kreuzer, M., Baffou, G. & Quidant, R. Mapping intracellular temper-ature using green fluorescent protein. Nano Letters. 12(4): 2107-2111. (2012). http://dx.doi.org/10.1021/nl300389y
  • Hernández, C.M. Caracterización funcional y ensamblaje membranal del canal de potasio shaker H4, y de segmentos truncados en la porción amino o carboxilo. Tesis de maestría. Un-iversidad de Colima, (2001).
  • Knop, M. & Edgar, B. A. Tracking protein turnover and degradation by microscopy: photo-switchable versus time-enconded fluorescent proteins. Open biology, (2014). doi:10.1098/rsob.140002 http://dx.doi.org/10.1098/rsob.140002
  • Prasher, D. C., Eckenrode, V. K., Ward, W. W., Pendergast, F. G. & Cormier, M. J. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111(2): 229-233. (1992). http://dx.doi.org/10.1016/0378-1119(92)90691-H
  • Tsien, R. Y. The green fluorescent protein. Annu Rev. Biochem. 67: 509-544. (1998). http://dx.doi.org/10.1146/annurev.biochem.67.1.509
  • Wang, S. & Hazelrigg, T. Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature. 369(6479): 400-403. (1994). http://dx.doi.org/10.1038/369400a0
  • Zhang C, Liu M. S. & Xing X. H. Temperature Influence on Fluorescence Intensity and En-zyme Activity of the Fusion Protein of GFP and Hyperthermophilic Xylanase. Appl. Microbiol. Biotechnol. 84(3): 511-517. (2009). http://dx.doi.org/10.1007/s00253-009-2006-8

Tuesday 27 June 2017

On the Equivalent Sources and Geometric Factor Calculation for a Circular Detection

DOI
10.15415/jnp.2016.41004

AUTHORS

Tony Viloria A., Luis Montiel, Laszlo Sajo-Bohus, Daniel Palacios

ABSTRACT

In all absolute measurements of the intensity of the radioactive materials and calibration of the detectors, it is essential the knowledge of the geometric efficiency. This work describes how to obtain the sources with different geometries and equal geometric efficiency (equivalent sources for geometric factor), corresponding to a linear, circumferential and circular homogeneous sources parallel to a circular detector. It is estimated the geometric factor of them by the Monte Carlo method. The results are compared with the published in the literature, thus confirming the validity of this method.

KEYWORDS

geometric factor, Monte Carlo method, equivalent source.

LINK:http://jnp.chitkara.edu.in/abstract.php?id=472#exactabstracts

REFERENCES

  • Abbas M.I., Analytical calculations of the solid anges subtended by a well-type detector at point and extended circular sources, Applied Radiation and Isotopes, 64, 1048-1056 (2006). http://dx.doi.org/10.1016/j.apradiso.2006.04.010
  • Conway J., Generalizations of Ruby’s formula for the geometric efficiency of a parallel-disk source and detector system, Nucl Instrum Methods A, 562, 146-153 (2006). http://dx.doi.org/10.1016/j.nima.2006.02.197
  • Conway J., Geometric efficiency for a circular detector and a ring source of arbitrary orientation and position, Nucl Instrum Methods A, 640, 99-109 (2011). http://dx.doi.org/10.1016/j.nima.2011.03.014
  • Galiano E. and Pagnutti C., An analytical solution for the solid angle subtended by a circular detector for a symetrically positioned linear source, Appl Radiat Isotopes, 64, 603-607 (2006). http://dx.doi.org/10.1016/j.apradiso.2005.12.006
  • Pommé S., Johansson L., Sibbens G. and Denecker B., An algorithm for the solid angle calculation applied in alpha-particle counting, Nucl Instrum Methods A, 505, 286-289 (2003). http://dx.doi.org/10.1016/S0168-9002(03)01070-2
  • Pommé S., A complete series expansion of Ruby’s solid-angle formula, NucI Instrum Methods A, 531, 616-620 (2004). http://dx.doi.org/10.1016/j.nima.2004.05.088
  • Pommé S., The solid angle subtended by a circular detector for a linear source, Appl Radiat Isotopes, 65, 724-727 (2007). http://dx.doi.org/10.1016/j.apradiso.2006.08.003
  • Pommé S., Jan Paepen. A series expansion of Conway’s generalized solid-angle formulas, Nucl Instrum Methods A, 579, 272-274 (2007). http://dx.doi.org/10.1016/j.nima.2007.04.054
  • Prata M.J., Solid angle subtended by a cylindrical detector at a point source in terms of elliptic integrals, Radiat Phys Chem, 67, 599-603 (2003). http://dx.doi.org/10.1016/S0969-806X(03)00144-0
  • Rizk R.A., Hathout A.M., and Hussein A.Z., On solid angle calculation NucI Instrum Methods A, Vol 245, 162-166, (1986).
  • Ruby L., Rechen J., A simple approach to the geometrical efficiency of a paralleldisk source and detector system, Nuclear Instruments and Methods, 58, 345-346 (1968). http://dx.doi.org/10.1016/0029-554X(68)90491-6
  • Sosa S. Integración numérica por el método de Monte Carlo (Para obtener el título de Licenciada en Matemáticas). Facultad de ciencias exactas y naturales. Universidad de Sonora. Hermosillo (México). 83 pp. 1997. http://lic.mat.uson.mx/tesis/99TesisSonia.PDF
  • Vega-Carrillo H., “Geometrical efficiency for a parallel disk source and detector”. Nuclear Instruents and Methods in Physics Reaserch A 371 (1996).
  • Viloria T., Soldovieri T., Bong. and Palacios D., “Sobre el ángulo sólido y las fuentes equivalentes”, Ciencia, Vol. 17, No. 4, 288-298, (2009).
  • Wielopolski L., “The Monte Carlo calculation of the average solid angle subtended by a right circular cylinder from distributed sources”. NucI Instrum Methods A, Vol. 143, 577-581, (1977). http://dx.doi.org/10.1016/0029-554X(77)90249-X
  • Zhang J., et al. “Development of software package for solid-angle calculations using the Monte Carlo method”, Nuclear Instruments and Methods in Physics Research A, 736, 40-45, (2014). http://dx.doi.org/10.1016/j.nima.2013.10.048

X-Ray Fluorescence Analysis of Fine Atmospheric Aerosols from a Site in Mexico City

DOI
10.15415/jnp.2016.41003

AUTHORS

A. E. Hernández-López, J. Miranda, J. C. Pineda

ABSTRACT

A study was performed in the Winter of the year 2015 in a Southwestern site in the MAMC (Ciudad Universitaria), collecting PM2.5 samples with a MiniVol. As a part of wider study focused to fully characterize aerosols at this site, an X-ray Fluorescence (XRF) spectrometer (based on an Rh X-ray tube) built to analyze environmental samples, was used to characterize the sample set. A total of 16 elements (Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, and Pb) were detected in most samples and mean concentrations were calculated. Cluster analysis was also applied to the elemental concentrations to find possible correlations among the elements.

KEYWORDS

XRF, atmospheric aerosols

REFERENCES

  • Díaz, R. V., López-Monroy, J., Miranda, J., Espinosa, A. A.. PIXE and XRF analysis of atmospheric aerosols from a site in the West area of Mexico City. Nuclear Instruments and Methods in Physics Research B, 318, 135-138, (2014). http://dx.doi.org/10.1016/j.nimb.2013.05.095
  • Espinosa, A., Reyes-Herrera, J., Miranda, J., Mercado, F., Veytia, M. A., et al. Development of an X-Ray fluorescence spectrometer for environmental science applications.InstrumentationScience&Technology, 40(6), 603-617, (2012). http://dx.doi.org/10.1080/10739149.2012.693560
  • Espinosa, J., Miranda, J., Pineda, J.C. Evaluación de la incertidumbre en cantidades correlacionadas: aplicación al análisis elemental de aerosoles atmosféricos. Revista Mexicana de Física, 56(1), 123-134, (2010).
  • Miranda, J., Crespo, I., Morales, M. A. Absolute principal component analysis of atmospheric aerosols in Mexico City. EnvironmentalScience and PollutionResearch 7(1), 14-18, (2000). http://dx.doi.org/10.1065/espr199910.006
  • Norma Oficial Mexicana NOM-025-SSA1-2014. Valores límites permisibles para la concentración de partículas suspendidas entre PM10 y PM2.5 en el aire ambiente y criterios de evaluación. Diario Oficial de la Federación, 20/08/2014.
  • Pope III, C. A., Burnett, R. T., Thurston, G. D., Thun, M. J., Calle, E. E., et al. Cardiovascular mortality and long term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation, 109, 71-77, (2004). http://dx.doi.org/10.1161/01.CIR.0000108927.80044.7F
  • Watson, J. G., Chow, J. C., Frazier, C. A. X-Ray fluorescence analysis of ambient air samples. In Gordon & Breach Science Publishers (Ed.), Elemental Analysis of Airborne Particles Volume 1 (pp. 67-97), (1999). Nertherlands: Amsterdam.

Experimental Setups for Single Event Effect Studies

DOI

AUTHORS

N. H. Medina, V. A. P. Aguiar, N. Added, F. Aguirre, E. L. A. Macchione, S. G. Alberton, M. A. G. Silve ira, J. Benfica, F. Vargas, B. Porcher

ABSTRACT

Experimental setups are being prepared to test and to qualify electronic devices regarding their tolerance to Single Event Effect (SEE). A multiple test setup and a new beam line developed especially for SEE studies at the São Paulo 8 UD Pelletron accelerator were prepared. This accelerator produces proton beams and heavy ion beams up to 107Ag. A Super conducting Linear accelerator, which is under construction, may fulfill all of the European Space Agency requirements to qualify electronic components for SEE.

KEYWORDS

Radiation effects, electronic devices, single event effects.

REFERENCES

  • Aguiar, V.A.P., et al., “Experimental Setup for Single Event Effects at Sao Paulo Pelletron Accelerator” Nucl. Inst. Meth. Phys. Res. B., 332, p. 397, 2014. http://dx.doi.org/10.1016/j.nimb.2014.02.105
  • Barnaby, H.J., “Total-Ionization-Dose Effects in Modern CMOS Technologies”, IEEE Transactions on Nuclear Science, vol. 53, no. 6, p. 3103-3121, 2006. http://dx.doi.org/10.1109/TNS.2006.885952
  • Barnaby, H.J., Schrimpf, R.D., Sternberg, A.L., Berth, V., Cirba, C.R. and Pease, R.L., “Proton Radiation Response Mechanisms in Bipolar Analog Circuits”, IEEE Transactions on Nuclear Science, vol. 48, no. 6, p. 2074–2080, 2001. http://dx.doi.org/10.1109/23.983175
  • Benfica, J., et al., “Analysis of SRAM-Based FPGA SEU Sensitivity to Combined Effects of Conducted EMI and TID”, IEEE, 2015,15th European Conf. on Radiation and Its Effects on Components and Systems (RADECS). Moscow, Russia. http://dx.doi.org/10.1109/RADECS.2015.7365584
  • Carlin, N., et al., Nucl. Inst. andMethods in PhysicsResearch A 540, 215-221, 2005.
  • Duzellier, S., “Radiation Effects on Electronic Devices in Space”, Aerospace Science and Technology 9, p. 93-99, 2005. http://dx.doi.org/10.1016/j.ast.2004.08.006
  • ESA/SCC Basic specification n. 25100: Single Event Effects Test Method and Guidelines, ESA, Noordwijk, Netherlands, 1995.
  • http://root.cern.ch/drupal/, last access 03/05/2016.
  • http://www.srim.org/, last access 03/05/2016.
  • Johnston, Allan. ReliabilityandradiationEffects inCompoundSemiconductors. World ScientificPublishingCo. Pte. Ltd., CaliforniaInstituteof Technology, USA. 2010.
  • Medina, N.H., et al., “First Successful SEE Measurements in Brazil”, IEEE Radiation Effects Data Workshop (REDW), 2014, Paris, France. http://dx.doi.org/10.1109/REDW.2014.7004571
  • Pelletron-LINAC Project, Internal Report DFN 01/1993.
  • Tambara, L., et al., “Heavy ion induced single event upsets testing of the 28 nm Xilinx Zynq-7000 all programmable SoC”. IEEE RadiationEffects Data Workshop (REDW), 2015, Moscow, Russia.
  • Vargas, F., private report, 2016.

Revisiting Natural Radiation in Itacaré and Guarapari Beaches

AUTHORS

M. A. G. Silveira, J. M. Oliveira, V A. P. Aguiar, N. H. Medina

ABSTRACT

Human beings are constantly exposed to several types of natural radiation. This paper aims to study the total external dose from northwestern Brazilian beach sands. The samples were collected at Prainha in Itacaré, Bahia, and Praia de AreiaPreta in Guarapari, Espírito Santo. Gamma spectrometry is a very useful technique to estimate the effective dose due to naturally occurring radionuclides, such as 40K and daughters of 238U and 232Th. In order to confirm the high activity present in these two regions, the effective dose due to each natural radionuclide was determined. Moreover, the Energy-Dispersive X-Ray Spectroscopy (EDS) microanalysis was used to characterize the soil composition and the minerals responsible for the high activity. In addition, the sand samples were separated in to magnetic and non-magnetic fractions in order to identify the contribution from each portion of the activity. Finally, the radionuclides and their dispersion in those places are consistent with previous studies, indicating effective doses above the world average that is between 0.3 mSv/year and 1.0 mSv/year.

KEYWORDS

Natural radionuclides, beach sands, gamma-ray spectrometry.

LINK: http://jnp.chitkara.edu.in/abstract.php?id=469#exactabstracts

REFERENCES


  • A. C. Freitas and A. S. Alencar, Journal of Environmental Radioactivity, 75, No. 2, pp. 211-223, (2004). http://dx.doi.org/10.1016/j.jenvrad.2004.01.002
  • A GUERRA DE GUARAPARI, http://especiais.gazetaonline.com.br/bomba/, 2015. Access: February, (2016).
  • A. H. Men T. O. Sanocha, Radiation Protection and Environment, 34, No. 3, pp. 178-184, (2012).
  • A. Malarica, C. N. Luce, R. Sogni, L. Achilli and S. Fab- bri, Proceedings of the La RadioattivitàAmbientalenelNuovoassettoIsti- tuzionalePiancenza, Bologna and Ravenna, pp. 225-230, (1994).
  • D. C. Vasconcelos, et al., World Journal of Nuclear Science and Technology, 3, 65-71, (2013). http://dx.doi.org/10.4236/wjnst.2013.32011
  • D. C. Vasconcelos, et al., Radiation Protection and Environment, 34, No. 3, pp. 178-184, (2012).
  • F. H. M. Medeiros. Master Thesis, Instituto de Física da USP (2003).
  • AEA - National Nuclear Data Center. Available in {http://www.nndc.bnl.gov/}. Access: February, 2016.
  • K. S. Krane, Introduction of Nuclear Physics,John Wiley & Sons,USA,(1988).
  • M. A. G. Silveira, N. H. Medina, L. L. Cardoso, Brazilian Journal of Radiation Sciences, 3, p.1/132 – 14, (2015). http://dx.doi.org/10.15392/bjrs.v3i1A
  • M. M. Matsumoto, M. A. G. Silveira; N. H. Medina, N. K. Umisedo.AIP Conference Proceedings.Melville, NY, USA: American Institute of Physics, 1034, p. 252-255, (2008). http://dx.doi.org/10.1152/ajpcell.00504.2007
  • N. Fujinami, T. Koga and H. Morishima, Proceedings of the 10th International Congress of the International Radiation Protection Association, Hiroshima, pp. 1-19, (2000).
  • P. Chiozzi, V. Pasquale and M. Verdoya, Radiation Measurements, 35, No. 2, 2002, pp. 147- 154. http://dx.doi.org/10.1016/S1350-4487(01)00288-8
  • R. M. Anjos et al., Marine Geology, 229, 29-43, (2006). http://dx.doi.org/10.1016/j.margeo.2006.03.001
  • R. Veiga, N. Sanches, R. M. Anjos, K. Macario, et al., Radiation Measurements, 41, No. 2, pp. 189-196, (2006). http://dx.doi.org/10.1016/j.radmeas.2005.05.001
  • UNSCEAR: Sources and Effects of Ionizing Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations, New York, (2000).
  • V. A. P. Aguiar, M. A. G. Silveira, N. H. Medina, R. H. Moreira, I. J. Sayeg, 17th International Microscopy Congress, Rio de Janeiro, (2010).

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...