Friday 7 September 2018

Evolution of Shapes and Search for Shape Coexistence in Sd-Shell Nuclei by M.Kumawat, G. Saxena, M. Kaushik, S. K. Jain and M. Aggarwal

Evolution of Shapes and Search for Shape Coexistence in Sd-Shell Nuclei

M.Kumawat, G. Saxena, M. Kaushik, S. K. Jain and M. Aggarwal
  • Download PDF
  • DOI Number
    https://doi.org/10.15415/jnp.2018.52025
KEYWORDS
Relativistic mean-field theory; Macroscopic-microscopic approach (Mac-Mic); Shape-coexistence; Shape transition; sd-shell nuclei.
PUBLISHED DATEFebruary 2018
PUBLISHERThe Author(s) 2018. This article is published with open access at www.chitkara.edu.in/publications
ABSTRACT
A detailed and systematic study has been performed using state dependent Relativistic Mean-Field plus BCS (RMF+BCS) approach to investigate shape evolution for even-even isotopes of Ne, Mg, Si and S. We perform quadrupole constraint calculation using NL3* parameter and look into the variation of binding energy with respect to deformation and find the shape and deformation corresponding to energy minima. We find various isotopes showing shape coexistence and shape transition while moving from proton drip-line to neutron drip-line. These results are compared with Macroscopic-microscopic approach (Mac-Mic) with Nilson Strutinsky (NS) prescription and some other works and are found consistent for these sd-shell nuclei.
Page(s)283–290
URLhttp://dspace.chitkara.edu.in/jspui/bitstream/123456789/708/1/003JNP_Kumwat.pdf
ISSNPrint : 2321-8649, Online : 2321-9289
DOIhttps://doi.org/10.15415/jnp.2018.52025
REFERENCES
  • Cceres, L., et al.. Shells and shapes in the 44S nucleus. Acta Physica Polonica B 42, 3 (2011).
  • Nobuo Hinohara et al.. Shape fluctuations in the ground and excited 0+ states of 30,32,34Mg. Phys. Rev. C 84, 061302(R) (2011).
  • Wimmer, K., et al.. Discovery of the shape coexisting 0+ State in 32Mg by a two neutron transfer reaction. Phys. Rev. Lett. 105, 252501 (2010).
  • Li, A., Zhou,X. R., and Sagawa ,H., Tensor force and shape evolution of Si isotopes in the Skyrme-Hartree-Fock model. Progr. Theor. Exp. Phys. 2013, 063D03 (2013).
  • Davies, A. D., et al.. Probing Shell Structure and Shape Changes in Neutron-Rich Sulfur Isotopes through Transient-Field g-Factor Measurements on Fast Radioactive Beams of 38S and40S. Phys. Rev. Lett. 96, 112503 (2006).
  • Saxena, G., Kumawat, M., Kaushik, M., Jain, S. K., and Mamta Aggarwal. Twoproton radioactivity with 2p halo in light mass nuclei A = 1834. Phys. Lett. B 775, 126 (2017).
  • Saxena, G., Kumawat, M., Kaushik, M., Singh, U. K., Jain,S. K., Somorendro Singh, S., and Mamta Aggarwal. Implications of occupancy of 2s1/2 state in sd-shell within RMF+BCS approach. Int. J. Mod. Phys. E 26, 1750072 (2017).
  • Lalazissis, G. A., Karatzikos, S., Fossion, R., Pena Arteaga, D., Afanasjev, A. V., and Ring, P.,The effective force NL3 revisited. Phys. Lett. B 671, 36 (2009).
  • Mamta Aggarwal. Proton radioactivity at non-collective prolate shape in high spin state of 94Ag. Phys. Lett. B 693, 489 (2010).
  • Mamta Aggarwal. Coexisting shapes with rapid transitions in odd-Z rare-earth proton emitters. Phys. Rev. C 89, 024325 (2014).
  • Lalazissis, G. A., Vretenar, D., and Ring,P., Relativistic Hartree-Bogoliubov description of sizes and shapes of A=20 isobars. Phys. Rev. C 63, 034305 (2001).
  • Singh, D., Saxena, G., Kaushik, M., Yadav, H. L., and Toki, H., Study of twoproton radioactivity within the relativstic mean-field plus bcs approach. Int. J. Mod. Phys. E 21, 1250076 (2012).
  • Sugahara, Y., and Toki, H., Relativistic Mean-Field Theory for Unstable Nuclei with Non-Linear σ and (Omega) terms. Nucl. Phys. A 579, 557 (1994).
  • Yadav, H. L., Kaushik, M., and Toki, H., Description of drip-line nuclei within the Relativistic Mean-Field plus BCS Aproach. Int. J. Mod. Phys. E 13, 647 (2004).
  • Geng, L. S., Toki, H., Sugimoto, S., and Meng, J., Relativistic mean field theory for deformed nuclei with pairing correlations. Prog. Theor. Phys. 110, 921 (2003).
  • Gambhir,Y. K., Ring, P., and Thimet, A., Relativistic mean field theory for finite nuclei. Annals Phys. 198, 132 (1990).
  • Flocard, H., Quentin, P., Kerman, A. K., and Vautherin, D., Nuclear deformation energy curves with the constrained Hartree-Fock method. Nucl. Phys. A 203, 433 (1973).
  • Geng,L. S., Toki, H., Ozawa, A., and Meng, J., Proton and neutron skins of light nuclei within the relativistic mean field theory Nucl. Phys. A 730, 80 (2004).
  • Ring,P.,Relativistic mean field theory in finite nuclei. Prog. Part. Nucl. Phys. 37, 193 (1996).
  • Saxena, G., Singh, D., Kaushik, M., and Singh,S. S., RMF+ BCS approach for drip-line isotopes of Si., Canadian Journal of Physics 92, 253 (2014).
  • Saxena, G., and Singh, D., Study of neutron magic drip-line nuclei within relativistic mean-field plus BCS Approach. Int. J. Mod. Phys. E 22, 1350025 (2013).
  • Dobaczewski, J., Flocard, H., and Treiner, J., Hartree-Fock-Bogolyubov description of nuclei near the neutron-drip line. Nucl. Phys. A 422, 103 (1984).

Wednesday 29 August 2018

The Three-Body Structure of 2n and 2p Halo Nuclei I. Sreeja and M. Balasubramaniam


A three-cluster model developed for ternary fission studies has been applied for the first time to study the three-body structure of 2n and 2p halo nuclei. For the experimentally known 2n, 2p halo nuclei, all possible ternary fragmentation potential energy surface (PES) is calculated. The two-body breakup reported earlier, clearly indicated a strong minimum in the PES corresponding to 1n/1p and/or 2n/2p cluster plus core configuration. However, the present calculations of PES reveal that, the three- body breakup does not result always with 2n and/or 2p as a cluster. A 1n and/or 1p cluster along with the core is initially formed, and then the core loses one nucleon to make either a 2n plus core or 2p plus core structure. The results are substantiated with the calculations of preformation probability calculated within quantum mechanical fragmentation theory.



URLhttp://dspace.chitkara.edu.in/jspui/bitstream/123456789/707/1/002JNP_Sreeja.pdf
ISSNPrint : 2321-8649, Online : 2321-9289
DOIhttps://doi.org/10.15415/jnp.2018.52024
REFERENCES
  • I. Tanihata, H. Hamagaki, O. Hashimoto, S. Nagamiya et al., Phys. Lett. 160B, 380 (1985).
  • I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida et al., Phys. Rev. Lett. 55, 2676 (1985). https://doi.org/10.1103/PhysRevLett.55.2676
  • I. Tanihata, T. Kobayashi, O. Yamakawa, S. Shimoura et al., Phys. Lett. B 206, 592 (1988).
  • M. Brodeur, T. Brunner, C. Champagne, S. Ettenenauer et al., Phys. Rev. Lett. 108, 052504 (2012). https://doi.org/10.1103/PhysRevLett.108.052504
  • B. V. Danilin, I. J. Thompson, J. S. Vaagen and M. V. Zhukov, Nucl. Phys. A 632, 383 (1998). https://doi.org/10.1016/S0375-9474(98)00002-5
  • R. K. Gupta, M. Balasubramaniam, R. K. Puri and W. Scheid, J. Phys. G: Nucl. Part. Phys. 26, L23 (2000). https://doi.org/10.1088/0954-3899/26/2/102
  • R. K. Gupta, M. Balasubramaniam et al., J. Phys. G: Nucl. Part. Phys. 32, 565 (2006). https://doi.org/10.1088/0954-3899/32/4/012
  • G. Sawhney, M. K. Sharma and R. K. Gupta J. Phys. G: Nucl. Part. Phys 41, 055101 (2014). https://doi.org/10.1088/0954-3899/41/5/055101
  • R. K. Gupta, Sushil Kumar et al., J. Phys. G: Nucl. Part. Phys. 28, 699 (2002). https://doi.org/10.1088/0954-3899/28/4/309
  • W. Horiuchi and Y. Suzuki, Phys. Rev. C 74, 034311 (1961). https://doi.org/10.1103/PhysRevC.74.034311
  • ] T. Frederico, M. T. Yamashita and Lauro Tomio, Nucl. Phys. A 787, 561c-568c (2007). https://doi.org/10.1016/j.nuclphysa.2006.12.085
  • I. Mazhumdar, Pramana - J. Phys., 75, 81 (2010). https://doi.org/10.1007/s12043-010-0067-y
  • Shi-Sheng Zhang, M. S. Smith, Zhong-Shu Kang and Jie Zhao, Phys. Lett. B 730, 30 (2014).
  • L. A. Souza, F. F. Bellotti and T. Frederico, J. Phys. 630, 012043 (2015). [15] Y. Togano, T. Nakamura, Y. Kondo, J. A. Tostevin et al., Phys. Lett. B 761, 412 (2016). https://doi.org/10.1016/j.physletb.2016.08.062 [
  • E. Rydberg, C. Forssen and L. Platter, Few Body Syst. 58, 143 (2017). https://doi.org/10.1007/s00601-017-1307-1
  • W. Schwab et al., Z. Phys. A 350, 283 (1995). https://doi.org/10.1007/BF01291183
  • A. Ozawa et al., Phys. Lett. B 334, 18 (1994). https://doi.org/10.1016/0370-2693(94)90585-1
  • Z. Ren, B. Chen, Z. Ma and G. Xu, Phys. Rev. C 53, 572 (1996). https://doi.org/10.1103/PhysRevC.53.R572
  • R. Kanungo, M. Chiba, S. Adhikari, D. Fang et al., Phys. Lett. B 571, 21 (2003). https://doi.org/10.1016/j.physletb.2003.07.050
  • R. Kanungo, Nucl. Phys. A 738, 293 (2004). https://doi.org/10.1016/j.nuclphysa.2004.04.048
  • L. V. Grigorenko, Yu. L. Parfenova and M. V. Zhukov, Phys. Rev. C 71, 051604(R) (2005).
  • W. Geithner, T. Neff, G. Audi, K. Blaum et al., Phys. Rev. Lett. 101, 252502 (2008). https://doi.org/10.1103/PhysRevLett.101.252502
  • W.S. Hwash, Int. J. Mod. Phys. E 25, 1650105 (2016). https://doi.org/10.1142/S0218301316501056
  • R. K. Gupta, Proceedings of the Vth International Conference on Nuclear Reaction Mechanisms, Varenna, Italy (1988) p. 416.
  • S. S. Malik and R. K. Gupta, Phys. Rev. C 39 1992 (1989). https://doi.org/10.1103/PhysRevC.39.1992
  • R. K. Gupta, W. Scheid, and W. Greiner, J. Phys. G: Nucl. Phys. 17 1731(1991). https://doi.org/10.1088/0954-3899/17/11/018
  • S. Kumar and R. K. Gupta, Phys. Rev. C 55 218 (1997). https://doi.org/10.1103/PhysRevC.55.218
  • R. K. Gupta, in Heavy Elements and Related New Phenomena, edited by W. Greiner and R.K. Gupta (World Scientific, Singapore, 1999), Vol. II, p. 730. https://doi.org/10.1142/9789812816634_0020
  • K. Manimaran and M. Balasubramaniam, Phys. Rev. C 79, 024610 (2009). https://doi.org/10.1103/PhysRevC.79.024610
  • K. Manimaran and M. Balasubramaniam, Eur. Phys. J. A 45, 293 (2010). https://doi.org/10.1140/epja/i2010-11000-7
  • K. Manimaran and M. Balasubramaniam, J. Phys. G: Nucl. Part. Phys. 37, 045104 (2010). https://doi.org/10.1088/0954-3899/37/4/045104
  • K. Manimaran and M. Balasubramaniam, Phys. Rev. C 83, 034609 (2011). https://doi.org/10.1103/PhysRevC.83.034609
  • K. R. Vijayaraghavan, W. von Oertzen and M. Balasubramaniam, Eur. Phys. J. A 48, 27 (2012). https://doi.org/10.1140/epja/i2012-12027-4
  • K. R. Vijayaraghavan, M. Balasubramaniam and W. von Oertzen, Phys. Rev. C 90, 024601 (2014). https://doi.org/10.1103/PhysRevC.90.024601
  • M. Balasubramaniam, K. R. Vijayaraghavan and C. Karthickraj, Pramana - J. Phys., 85, 423 (2015).
  • M. Balasubramaniam, K. R. Vijayaraghavan and K. Manimaran, Phys. Rev. C 93, 014601 (2016). https://doi.org/10.1103/PhysRevC.93.014601
  • G. Audi, F. G. Kondev, M. Wang, B. Pfeiffer, X. Sun, J. Blachot and M. MacCormik, Chin. Phys. C 36(12), 1157 (2012) https://doi.org/10.1088/1674-1137/36/12/
  • P. Mller, J. R. Nix, W. D. Myers, W. J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995)
  • J. Blocki, J. Randrup, W. J. Swiatecki and C. F. Tsang, Ann. Phys. (NY) 105, 427 (1977). https://doi.org/10.1016/0003-4916(77)90249-4
  • H. Kröger and W. Scheid, J. Phys. G 6, L85 (1980). https://doi.org/10.1088/0305-4616/6/4/006

Tuesday 14 August 2018

Distinguishing Features of Radioactive Compound Nucleus Decays within the Dynamical Cluster decay Model

Hemdeep, Sahila Chopra, Pooja Kaushal and Raj K. Gupta


Dynamical cluster-decay model; deformed non-coplanar fragments; non-compound nucleus effects; radioactive nuclei.


In this paper, we are interested to study the distinguishing features of the decaying radioactive compound nuclei 246Bk* and 220Th*, using the Dynamical Cluster-decay Model (DCM) with deformation β and non-coplanar degree-of-freedom Φ. 246Bk* and 220Th* have so-far been studied within the DCM, using quadrupole deformations (β2i), “optimum” orientations (θopt) of the two nuclei lying in the same plane (Φ=0o), which shows that there is a non-compound nucleus (nCN) content in the observed data. The first turning point Ra (equivalently, the neck-length ∆R in Ra=R1+R2+∆R), which fixes both the preformation and penetration paths, is used to best fit the measured evaporation residue (ER) and fusion-fission (ff) cross sections, σER, σff, respectively, in 220Th* and 246Bk*, formed via different entrance channels. In this work, we subsequently add higher multipole deformations, the octupole and hexadecupole (β3i, β4i), `compact’ orientations θci and Φ≠00, and look for their effects on the nCN contribution predicted by the DCM calculations referenced above.

URLhttp://dspace.chitkara.edu.in/jspui/bitstream/123456789/706/1/001JNP_Hampdeep.pdf
ISSNPrint : 2321-8649, Online : 2321-9289
DOIhttps://doi.org/10.15415/jnp.2018.52023


  • B. B. Singh, M. K. Sharma, and R. K. Gupta, Phys. Rev. C 77, 054613 (2008). https://doi.org/10.1103/PhysRevC.77.054613
  • R. K. Gupta and M. Bansal, Int. Rev. of Phys. (I.RE.PHY) 5, 74 (2011).
  • M. Bansal, Ph.D. Thesis, Panjab University, Chandigarh, (2012).
  • Hemdeep, S. Chopra, A. Kaur, and R. K. Gupta, Phys. Rev. C 95, 014609 (2017). https://doi.org/10.1103/PhysRevC.95.014609
  • R. K. Gupta, M. Manhas and W. Greiner, Phys. Rev. C 73, 054307 (2006). https://doi.org/10.1103/PhysRevC.73.054307
  • C. C. Sahm, et al., Nucl. Phys. A 441, 316 (1985). https://doi.org/10.1016/0375-9474(85)90036-3
  • D. Vermeulen, et al., Z. Phys. A 318, 157 (1984). https://doi.org/10.1007/BF01413464
  • G. N. Knyazheva, et al., Phys. Rev. C 75, 064602 (2007). https://doi.org/10.1103/PhysRevC.75.064602
  • D. A. Mayorov, et al., Phys. Rev. C 90, 024602 (2014). https://doi.org/10.1103/PhysRevC.90.024602
  • P. Kaushal, S. Chopra, Hemdeep, and R. K. Gupta, Proceedings DAE-BRNS Symposium on Nucl. Phys. 62, 480 (2017).
  • R. K. Gupta, in Clusters in Nuclei, Lecture Notes in Physics 818, edited by C. Beck, Vol. I, (Springer Verlag, Berlin, 2010), pp. 223–265.
  • R. K. Gupta, R. Kumar, N. K. Dhiman, M. Balasubramaniam, W. Scheid, and C. Beck, Phys. Rev. C 68, 014610 (2003). https://doi.org/10.1103/PhysRevC.68.014610
  • R. K. Gupta, M. Balasubramaniam, R. Kumar, N. Singh, M. Manhas, and W. Greiner, J. Phys. G: Nucl. Part. Phys. 31, 631 (2005). https://doi.org/10.1088/0954-3899/31/7/009
  • H. Kroeger and W. Scheid, J. Phys. G 6, L85 (1980). https://doi.org/10.1088/0305-4616/6/4/006
  • S. S. Malik and R. K. Gupta, Phys. Rev. C 39, 1992 (1989). https://doi.org/10.1103/PhysRevC.39.1992
  • N. J. Davidson, S. S. Hsiao, J. Markram, H. G. Miller, and Y. Tzeng, Nucl. Phys. A 570, 61c (1994). https://doi.org/10.1016/0375-9474(94)90269-0
  • M. Balasubramaniam, R. Kumar, R. K. Gupta, C. Beck, and W. Scheid, J. Phys. G: Nucl. Part. Phys. 29, 2703 (2003). https://doi.org/10.1088/0954-3899/29/12/003
  • G. Audi, A. H. Wapstra, and C. Thiboult, Nucl. Phys. A 729, 337 (2003). https://doi.org/10.1016/j.nuclphysa.2003.11.003
  • P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995)
  • W. Myers and W. J. Swiatecki, Nucl. Phys. 81, 1 (1966). https://doi.org/10.1016/0029-5582(66)90639-0
  • S. Jensen and J. Damgaard, Nucl. Phys. A, 203, 578 (1973). https://doi.org/10.1016/0375-9474(73)90365-5
  • R. K. Gupta, N. Singh, and M. Manhas, Phys. Rev. C 70, 034608 (2004). https://doi.org/10.1103/PhysRevC.70.034608
  • S. Chopra, M. Bansal, M. K. Sharma, and R. K. Gupta, Phys. Rev. C 88, 014615 (2013). https://doi.org/10.1103/PhysRevC.88.014615
  • M. Manhas and R. K. Gupta, Phys. Rev. C 72, 024606 (2005). https://doi.org/10.1103/PhysRevC.72.024606

Monday 6 August 2018

Study of Solid-State Radiolysis of Behenic, Fumaric, and Sebacic Acids for their Possible Use as Gamma Dosimeters Measured Via ATR-FT-IR Spectroscopy

 

  • J. Cruz-CastañedaInstitute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico; Master’s and PhD Program in Chemical Sciences, National Autonomous University of Mexico (UNAM). PO Box 70-543, 04510 Mexico City, Mexico
  • A. L. Meléndez-LópezInstitute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico; Master’s and PhD Program in Chemical Sciences, National Autonomous University of Mexico (UNAM). PO Box 70-543, 04510 Mexico City, Mexico
  • A. HerediaInstitute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico
  • S. RamosbernalInstitute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico
  • A. Negrón-MendozaInstitute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico
Keywords: dosimeter, carboxylic acid, gamma radiation, ATR-FT-IR spectroscopy

Abstract

The intensive use of ionizing radiation has promoted the constant investigation of adequate dosimetric systems in the measurement of doses applied in irradiated products. The objective of this work is to propose gamma dosimetric systems, using carboxylic acids in a solid state and measuring the change via infrared spectroscopy (carboxylic acid/ ATR-FT-IR1). We worked with three systems: (1) behenic acid/ATR-FT-IR, (2) sebacic acid/ATR-FT-IR, and (3) fumaric acid/ATR-FT-IR. The change in absorbance corresponding to the stretching vibration frequency of the carbonyl group to the absorbed dose (in the range of kGy) was measured. The results showed that the acid/ATR-FT-IR systems have a linear response with respect to the absorbed dose, for behenic acid/ATR-FT-IR from 0 to 122 kGy, for ATR-FT-IR sebacic acid from 0 to 61 kGy, and for fumaric acid/ATR-FT-IR from 0 to 34 kGy. The results indicated that the linear response of the absorbance dose in the three systems allows us to continue studying other variables to be able to propose them as chemical dosimeters.


References

K. Van Laere, J. Buysse, and P. Berkvens, Int. J. Radiat. Appl. Instrumentation. Part A. Appl. Radiat. Isot. 40, 885 (1989). https://doi.org/10.1016/0883-2889(89)90012-9

A. R. Jones, Radiat.Res. 47, 35 (1971). https://doi.org/10.2307/3573286

A. Negron-Mendoza and S. Ramos-Bernal, Radiat. Phys. Chem. 52, 395 (1998). https://doi.org/10.1016/S0969-806X(98)00059-0

J. Cruz-Castañeda, A. Negron-Mendoza, and S. Ramos-Bernal, AIP Conf. Proc. 49, 49 (2013).

H. Fricke and E. J. Hart, in Radiat. Dosim., edited by F. H. Attix; W. C Roesch, 2nd ed. (Academic Press, New York, 1966).

A. Meléndez-López, A. Negrón-Mendoza, V. GómezVidales, R. M. Uribe, and S. Ramos-Bernal, Radiat. Phys. Chem. 104, 230 (2014). https://doi.org/10.1016/j.radphyschem.2014.03.012




Issue


How to Cite
J. Cruz-Castañeda; A. L. Meléndez-López; A. Heredia; S. Ramosbernal; A. Negrón-Mendoza. Study of Solid-State Radiolysis of Behenic, Fumaric, and Sebacic Acids for Their Possible Use As Gamma Dosimeters Measured Via ATR-FT-IR Spectroscopy. J. Nucl. Phy. Mat. Sci. Rad. A. 20186, 81-85.

Agent Based Model of the Cytosine Radiation Induced Reaction

 

  • A L Rivera
    Institute of Nuclear Sciences. National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico; Complexity Science Center, National Autonomous University of Mexico (UNAM)
  • S Ramos-Beltran
    Complexity Science Center, National Autonomous University of Mexico (UNAM)
  • A Paredes-Arriaga
    Institute of Nuclear Sciences. National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico; Sciences Faculty, National Autonomous University of Mexico (UNAM), 04510 Mexico City, Mexico
  • A Negron-Mendoza
    Institute of Nuclear Sciences. National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico
Keywords: Radiation induced chemical reactions, Cytosine, Kinetics of reactions, Agent-based model

Abstract

The stability of cytosine in aqueous solution was studied in the laboratory, simulating prebiotic conditions and using gamma radiation as an energy source, to describe cytosine behavior under radiation. For a better understanding of the radiation-induced processes, we proposed a mathematical model that considers chemical reactions as nonlinear ordinary differential equations. The radiolysis can be computationally simulated by an agent-based model, wherein each chemical species involved is considered to be an agent that can interact with other species with known reaction rates. The radiation is contemplated as a factor that promotes product formation/destruction, and the temperature determines the diffusion speed of the agents. With this model, we reproduce the changes in cytosine concentration obtained in the laboratory under different irradiation conditions.

 

References

M. Colín-García, A. Negrón-Mendoza, S. RamosBernal, International Journal of Astrobiology, 9, 279– 288, (2009). http://dx.doi.org/10.1089/ast.2006.0117

H. G. Hill, J. A. Nuth, Astrobiology, 3(2), 291–304, (2003). https://doi.org/10.1089/153110703769016389

A. Negrón-Mendoza, C. Ponnamperuma, Photochemistry and Photobiology, 36(5), 595–597, (1982). https://doi.org/10.1111/j.1751-1097.1982.tb04421.x

A. Negrón-Mendoza, G. Albarran, S. Ramos, E. Chacon, Journal of Biological Physics, 20(1), 71–76, (1995). http:/dx.doi.org/10.1007/BF00700422.

S. Castillo, A. Negrón-Mendoza, Z. D. Draganic, I. G. Draganic, Radiation Physics and Chemistry, 26, 437–443, (1985). https://doi.org/10.1016/0146-5724(85)90232-8

J. Cruz-Casta-eda, A. Negrón-Mendoza, D. Frías, M. Colín-García, A. Heredia, et al., Journal of Radioanalytical and Nuclear Chemistry, 304(1), 219–225, (2015). https://doi.org/10.1007/s10967-014-3711-z

S. L. Miller, Science, 117(3046), 528–529, (1953). https://doi.org/10.1126/science.117.3046.528

W. Gilbert, Nature, 319(6055), 618, (1986). https://doi.org/10.1038/319618a0

G. Sanchez-Mejorada, D. Frias, A. Negrón-Mendoza, S. Ramos-Bernal, Radiation Measurements, 43(2), 287–290, (2008). https://doi.org/10.1016/j.radmeas.2007.11.038

V. P. Zhdanov, Surface Science Reports, 45(7), 231–326, (2002). https://doi.org/10.1016/S0167-5729(01)00023-1

A. L. Rivera, S. Ramos-Bernal, A. Negrón-Mendoza, J. Nucl. Phys. Mat. Sci. Rad. A., 5(1), 15–23, (2017). https://doi.org/10.15415/jnp.2017.51002

A. L. Rivera, S. Ramos-Bernal, A. Negrón-Mendoza, J. Nucl. Phys. Mat. Sci. Rad. A., 4(1), 149–157, (2016). https://doi.org/10.15415/jnp.2016.41015

A. A. Berryman, Ecology, 75, 1530–1535, (1992). https://doi.org/10.2307/1940005

A. Paredes Arriaga, Estabilidad de la guanina y citosinaendisoluciónacuosa y suspensión con Montmo rillonitasódica: simulaciones de charcasen la tierraprimitive (Stability of guanine and cytosine in aqueous solution and suspension with sodium Montmorillonite: simulations of ponds in the primitive land). Thesis, Universidad Nacional Autónoma de México, Mexico (2018).

A. L. Meléndez-López, S. Ramos-Bernal, M. L. RamírezVázquez, AIP Conference Proceedings 1607, 111, (2014). https://doi.org/10.1063/1.4890710

L. Lang, Absorption spectra in the ultraviolet and visible regions, Vol. 1 (Academic Press, New York, 1961). 


Issue
 
 
How to Cite
A L Rivera; S Ramos-Beltran; A Paredes-Arriaga; A Negron-Mendoza. Agent Based Model of the Cytosine Radiation Induced Reaction. J. Nucl. Phy. Mat. Sci. Rad. A. 2018, 6, 93-97.
 

 

 

Synthesis of MgB4O7:Dy3+and Thermoluminescent Characteristics at Low Doses of Beta Radiation

 

  • O Legorreta-AlbaInstitute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico; Chemistry Faculty, National Autonomous University of Mexico (UNAM), 3000 Universidad avenue, 04510 Mexico City, México
  • E Cruz-ZaragozaInstitute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico
  • D DíazChemistry Faculty, National Autonomous University of Mexico (UNAM), 3000 Universidad avenue, 04510 Mexico City, México
  • J Marcazzó"Arroyo Seco” Institute of Physics (Uncpba) and Cificen (Uncpba-Cicpba Conicet), Pinto 399, 7000 Tandil, Argentina
Keywords: Magnesium tetraborate, Dysprosium, Thermoluminescence, Beta-radiation, Dosimeter

Abstract

The synthesis and thermoluminescent characteristics of dysprosium-doped MgB4O7 are analyzed. The phosphor at different concentrations (0, 0.1, 0.5, 1, 2 and 4 mol%) of the dopant was prepared by the solution-assisted method. The magnesium borate compound was confirmed by X-ray diffraction. The annealing and dopant concentrations effects on the crystalline matrix were investigated. The highest thermoluminescent sensitivity was found with 450°C of annealing temperature and at high Dy3+ concentration too. The un-doped MgB4O7 phosphor shows a broad glow curve which peaked at 199°C and about 306 °C. Introducing Dy3+ dopant in the matrix that behavior was strongly changed. The wide glow curve shows three glow peaks; two small shoulders at 124 and 195 °C, and a highest peak between 323 and 336 °C temperature range. A large linear dose-response (5 – 2000 mGy) beta dose was obtained. The complex glow curves were deconvolved and the kinetics parameters were determined considering the general order kinetics model.


References

O. Annalakshmi, M. T. Jose, U. Madhusoodanan, J. Sridevi, B. Venkatraman, G. Amarendra, A. B. Mandal, Radiat. Eff. Defects Solids, 169(7), 636–645 (2014). https://doi.org/10.1080/10420150.2014.918128

A. J. J. Bos, Nucl. Instrum. Methods B, 184, 3–28 (2001). https://doi.org/10.1016/S0168-583X(01)00717-0

L. L. Campos, O. O.Fernandes, Radiat. Prot. Dosim., 33(1/4), 111–113 (1990). https://doi.org/10.1093/oxfordjournals.rpd.a080769

G. Cedillo Del Rosario, E. Cruz-Zaragoza, M. García Hipólito, J. Marcazzó J. M. A. Hernández, H. S. Murrieta, Applied Radiation and Isotopes, 127, 103–108 (2017). https://doi.org/10.1016/j.apradiso.2017.05.018

E. Cruz-Zaragoza, G. Cedillo Del Rosario, M. García Hipólito, J. Marcazzó, J. M. A. Hernández, E. Camarillo, H. S. Murrieta, J. Nucl. Phys. Mat. Sci. Rad. App., 5(1), 169–178 (2017). https://doi.org/10.15415/jnp.2017.51016

E. Cruz-Zaragoza, C. Furetta, J. Marcazzó, M. Santiago, C. Guarneros, M. Pacio, R. Palomino, J. Lumin., 179, 260–264 (2016). https://doi.org/10.1016/j.jlumin.2016.07.003

T. Depci, G. Ozbayoglu, A. Yilmaz, Metall. Mater. Trans. A, 41(10), 2284–2594 (2010). https://doi.org/10.1007/s11661-010-0341-0

M. Dogan, A. N. Yazici, Journal of Optoelectronics and Advanced Materials, 11(11), 1783–1787 (2009).

C. M. H. Driscoll, S. J. Mundy, J. M. Elliot, Radiat. Prot. Dosim., 1(2), 135–137 (1981).

D. Evis, A. Yucel, N. Kizilkaya, et al., Applied Radiation and Isotopes, 116, 138–142 (2016). https://doi.org/10.1016/j.apradiso.2016.08.004

F. Fukuda, N. Takeuchi, J. Mater. Sci. Lett., 8, 1001– 1002 (1989). https://doi.org/10.1007/BF01730467

C. Furetta, Handbook of Thermoluminescence. Singapore: World Scientific Publishing Co. Pte. Ltd. (2003). https://doi.org/10.1142/5167

C. Furetta, G. Kitis, P. S. Weng, T. S. Chu, Nucl. Instrum. Methods A, 420, 441–445 (1999). https://doi.org/10.1016/S0168-9002(98)01198-X

T. Hitomi, Radiothermoluminescence Dosimeter and Materials. U.S. Patent Filed no. 213 950 (1971).

M. Israeli, N. Kristianpoller, R. Chen, Phys. Rev. B, 6(12), 4861–4867 (1972). https://doi.org/10.1103/PhysRevB.6.4861

S. P. Lochab, A. Pandey, P. D. Sahare, R. S. Chauhan, N. Salah, R. Ranjan, Phys. Status Solidi A, 204(7), 2416–2425 (2007). https://doi.org/10.1002/pssa.200622487

C. F. May, J. A. Partridge, J. Chem. Phys., 40, 1401–1409 (1964). https://doi.org/10.1063/1.1725324

E. F. Mische, S. W. S. Mckeever, Radiat. Prot. Dosim., 29(3), 159–175 (1989). https://doi.org/10.1093/oxfordjournals.rpd.a080548

M. Prokic, Nucl. Instrum. Methods, 175, 83–86 (1980). https://doi.org/10.1016/0029-554X(80)90262-1

P. D. Sahare, M. Singh, P. Kumar, J. Lumin., 160, 158–164 (2015). https://doi.org/10.1016/j.jlumin.2014.11.042

M. Santiago, C. Graseli, E. Caseli, M. Lester, A. Lavat, F.Spano, Phys. Stat. Sol. (a), 185(2), 285–289 (2001). https://doi.org/10.1002/1521-396X(200106) 185:2<285::AID-PSSA285>3.0.CO;2-9

L. F. Souza, P. L. Antonio, L. V. E. Caldas, D. N. Souza, Nucl. Instrum. Methods Phys. Res. A, 784, 9–13 (2015). https://doi.org/10.1016/j.nima.2014.12.030

A. K. Subanakov, Zh. G. Bazarova, A. I. Nepomnyschih, A. V. Perevalov and B. G. Bazarov, Inorg. Mater., 50(5), 485–488 (2014). https://doi.org/10.1134/S0020168514050185

J. H. Schulman, R. D. Kirk, E. J. West, In Proc. Int. Conf. on Luminescence Dosimetry, US AEC Symposium series CONF-650637 (pp. 113–117). Stanford University, USA (1967).

D. I. Shahare, S. J. Dhoble, S. V. Moharil, J. Mater. Sci. Lett., 12, 1873–1874 (1993). https://doi.org/10.1007/BF00540016

M. Takenaga, O. Yamamoto, T. Yamashita, Nucl. Instrum. Methods, 175, 77–78 (1980). https://doi.org/10.1016/0029-554X(80)90259-1

E. G. Yukihara, E. D. Milliken, B. A. Doull, J. Lumin., 154, 251–259 (2014). https://doi.org/10.1016/j.jlumin.2014.04.038


Issue


How to Cite
O Legorreta-Alba; E Cruz-Zaragoza; D Díaz; J Marcazzó. Synthesis of MgB4O7:Dy3+and Thermoluminescent Characteristics at Low Doses of Beta Radiation. J. Nucl. Phy. Mat. Sci. Rad. A. 20186, 71-76.

Effect of the Target Size in the Calculation of the Energy Deposited Using PENELOPE Code

 

  • B. Leal-AcevedoInstitute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico
  • P.G. Reyes-RomeroScience Facultad, Autonomous University of the State Mexico, 100 Instituto Literario avenue, 50000 Toluca. Mexico
  • F. CastilloSpectroscopy Laboratory, Institute of Physical Sciences, National Autonomous University of Mexico (UNAM), PO Box 48-3, 62251Cuernavaca Morelos, Mexico
  • I. GamboadebuenInstitute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico
Keywords: Specific energy, Linear energy, PENELOPE code

Abstract

The specific and linear energy was calculated in target sizes of 10 μm, 5 μm, 1 μm, 60 nm, 40nm and 20 nm by taking into account the contribution of the primary photon beams and the electrons generated by them in LiF: Mg, Ti (TLD-100). The simulations were carried out by the code PENELOPE 2011. Using different histories of primary particles, for each energy beams the mean deposited energy is the same, but to achieve a statistical deviation lower than 1% the value of 108was fixed. We find that setting the values C1 = 0.1 C2 = 0.1 and Wcc = Wcr = 50 eV the time of simulation decreases around the 25%. The uncertainties (1 SD) in the specific energy increases with energy for all target sizes and decreases with target size, with values from 1.7 to 94% for 20 nm and between 0.1 and 0.8% for 10 μm. As expected, the specific and linear energies decrease with target size but not in a geometrical behavior.


References

M. Bernal and J. Liendo , Med Phys 36, 620–625, (2009). https://doi.org/10.1118/1.3056457

A. Kellerer and D. Chmelevsky, Concepts of microdosimetry, I. Quantities. Radiat Environ Biophys 12, 61–69, (1975). https://doi.org/10.1007/BF02339810

A. Kellerer and D. Chmelevsky, Radiat Environ Biophys 12, 205–216 (1975). https://doi.org/10.1007/BF01327348

P. Olko, Radiat Prot Dosimetry 65, 151–158, (1996). https://doi.org/10.1093/oxfordjournals.rpd.a031610

P. Olko, Henryk Niewodniczaski Institute of Nuclear Physics. (2002).

P. Olko, P. Bilski, M. Budzanowski, L. Czopyk, J. Swakon, et al., Radiat Prot Dosimetry 122, 378–381, (2006). https://doi.org/10.1093/rpd/ncl46

H. Rossi, Radiat Environ Biophys 17, 29–40, (1979). https://doi.org/10.1007/BF01323118

F. Salvat, J. M. Fernández-Varea and J. Sempau, PENELOPE-2011: A Code System for Monte Carlo Simulation of Electron and Photon Transport (No. NEA/NSC/DOC (2011 5). In Nuclear Energy Agency. Workshop Proceedings. Barcelona, (2011).

B. Scott and H. Schöllnberger, Radiat Prot Dosimetry 91, 377–384, (2000). https://doi.org/10.1093/oxfordjournals.rpd.a033247

F. Villegas, N. Tilly and A. Ahnesjö, Phys Med Biol 58, 6149–6162, (2013).

F. Villegas, N. Tilly, G. Bäckström, A. Ahnesjö, Phys Med Biol 59, 5531–5543, (2014). https://doi.org/10.1088/0031-9155/59/18/5531


Issue


How to Cite
B. Leal-Acevedo; P.G. Reyes-Romero; F. Castillo; I. Gamboadebuen. Effect of the Target Size in the Calculation of the Energy Deposited Using PENELOPE Code. J. Nucl. Phy. Mat. Sci. Rad. A. 20186, 67-70.

Analysis of the Energy Deposit in the Air by Radiation of Alpha Particles Emitted by the Water of a Spring Through the Geant4 Software

 

  • A Lima FloresFaculty of Physical Mathematical Sciences, Meritorious Autonomous University of Puebla (BUAP), San Claudio Avenue and 18th south street, Puebla 72570, Mexico
  • R Palomino-MerinoFaculty of Physical Mathematical Sciences, Meritorious Autonomous University of Puebla (BUAP), San Claudio Avenue and 18th south street, Puebla 72570, Mexico
  • E Moreno-BarbosaFaculty of Physical Mathematical Sciences, Meritorious Autonomous University of Puebla (BUAP), San Claudio Avenue and 18th south street, Puebla 72570, Mexico
  • JN Domínguez-KondoFaculty of Physical Mathematical Sciences, Meritorious Autonomous University of Puebla (BUAP), San Claudio Avenue and 18th south street, Puebla 72570, Mexico
  • VM CastanoCenter for Applied Physics and Advanced Technology, National Autonomous University of Mexico, Juriquilla Boulevard number 3001, 76230 Santiago De Querétaro, Querétaro, Mexico
  • AC Chavarría SánchezInstitute of Physics, National Autonomous University of Mexico (UNAM), 04520 Mexico City, Mexico
  • JI GolzarriInstitute of Physics, National Autonomous University of Mexico (UNAM), 04520 Mexico City, Mexico
  • G EspinosaInstitute of Physics, National Autonomous University of Mexico (UNAM), 04520 Mexico City, Mexico
Keywords: Radon 222 in spring water, radiological risk assessment, geant4 energy deposition

Abstract

This work presents the development of an analysis of the potential radiological risk generated by alpha particles emitted by radon-222, content in a spring water, for the population that usually swims in the place and for the people who live near this spring. This spring is located in the state of Puebla. Several measurements in the water of this place by researchers from IF-UNAM showed that it contains an average radon concentration level of 70 Bq/m3. To evaluate this radiological risk, it has been developed a computational simulation to know the area and the height where the alpha particles deposit their energy to the medium, as well as the amount of energy that they transfer. This simulation was developed in the Geant4 scientific software and the calculations were executed in the supercomputer of the Laboratorio Nacional de Supercomputo del Sureste de Mexico of the BUAP. The results show that the energy deposit occurs within the superficial limits of the spring, between 7 and 8 meters high. This deposited is not only by the alpha particles, but also by the secondary particles that are generated by the interaction of alpha particles with the environment. Based on these results, it is confirmed that there is no radiological risk by energy deposit by alpha particles for the people.


References

S. Agostinelliae, J. Allisonas, K. Amakoe, J. Apostolakisa, H. Araujoaj, et al., Geant4—a simulation toolkit. Nucl. Instrum. Meth. A., 506(3), 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

K. Amakoa, S. Guatellib, V. Ivanchenckoc, M. Maired, B. Mascialino, et al., Geant4 and its validation. Nucl. Phys. B Proc. Suppl., 150, 44–49 (2006). https://doi.org/10.1016/j.nuclphysbps.2004.10.083

I. Antcheva M. Ballintijn, B. Bellenot, M. Biskup, R. Brun, et al., Comput. Phys. Commun., 180(12), 2499– 2512 (2009). https://doi.org/10.1016/j.cpc.2009.08.005

A. Auvinen, Int. J. Cancer, 114(1), 109–113 (2005). https://doi.org/10.1002/ijc.20680

C. R. Cothern, J. E. Smith, Environmental Radon. New York, NY: Springer Science + Business Media, LLC (1987). https://doi.org/10.1007/978-1-4899-0473-7

E. J. Hahn, Y. Gokun, W. M. Andrews, B. L. Overfield, H. Robertson, et al., Preventive Medicine Reports, 2, 342–346 (2015). https://doi.org/10.1016/j.pmedr.2015.04.009


Issue


How to Cite
A Lima Flores; R Palomino-Merino; E Moreno-Barbosa; JN Domínguez-Kondo; VM Castano; AC Chavarría Sánchez; JI Golzarri; G Espinosa. Analysis of the Energy Deposit in the Air by Radiation of Alpha Particles Emitted by the Water of a Spring Through the Geant4 Software. J. Nucl. Phy. Mat. Sci. Rad. A. 20186, 61-66.

Improvements to the X-ray Spectrometer at the Aerosol Laboratory, Instituto de Física, UNAM

 

  • L V Mejía-PonceInstitute of Physics, National Autonomous University of Mexico (UNAM), PO Box 20-364, 01000 Mexico City, Mexico
  • A E Hernández-LópezInstitute of Physics, National Autonomous University of Mexico (UNAM), PO Box 20-364, 01000 Mexico City, Mexico
  • S Reynoso-CrucesInstitute of Physics, National Autonomous University of Mexico (UNAM), PO Box 20-364, 01000 Mexico City, Mexico
  • J C PinedaInstitute of Physics, National Autonomous University of Mexico (UNAM), PO Box 20-364, 01000 Mexico City, Mexico
  • J A Mendoza-FloresInstitute of Physics, National Autonomous University of Mexico (UNAM), PO Box 20-364, 01000 Mexico City, Mexico
  • J MirandaInstitute of Physics, National Autonomous University of Mexico (UNAM), PO Box 20-364, 01000 Mexico City, Mexico
Keywords: X-ray fluorescence analysis, Silicon DriftDetector SDD, chemical composition of atmospheric aerosols, Standard Reference Material 2783

Abstract

Due to the demands of better (accurate and precise) analytical results using X-ray Fluorescence (XRF) at the Aerosol Laboratory, Instituto de Física, UNAM, it was necessary to carry out improvements in instrumentation and analytical procedures in the x-ray spectrometer located in this facility. A new turbomolecular vacuum system was installed, which allows reaching the working pressure in a shorter time. Characteristic x-rays are registered with a Silicon Drift Detector, or SDD, (8 mm thick Be window, 140 eV at 5.9 keV resolution), working directly in a high-vacuum, permitting the detection of x-rays with energies as low as 1 keV (Na Ka) and higher counting rates than in the past. Due to the interference produced by the Rh L x-rays emitted by the tube normally used for atmospheric and food analysis with Cl K x-rays, another tube with a W anode was mounted in the spectrometer to avoid this interference, with the possibility to select operation with any of these tubes. Examples of applications in atmospheric aerosols and other samples are presented, to demonstrate the enhanced function of the spectrometer. Other future modifications are also explained.


References

Z. B. Alfassi, Non-destructive Elemental Analysis.Oxford: Blackwell Science, Ed. (2001).

R. E. Van Grieken, A. A. Markowicz, Handbook of X-raySpectrometry. New York: Marcel Dekker, Eds. (2002).

A. A. Espinosa, et al., Instrumentation Science andTechnology40(3), 603–617 (2012).https://doi.org/10.1080/10739149.2012.693560

R. V. Díaz, J. López-Monroy, J. Miranda, A. A.Espinosa, Nuclear Instruments and Methods in PhysicsResearch Section B: Beam Interactions with Materials and Atoms, 318(1), 135-138 (2014).https://doi.org/10.1016/j.nimb.2013.05.095

Romero-Dávila, E. J. Miranda, J. C. Pineda, AIPConference Proceedings1671, paper 020006 (2015).

Manual for QXAS. Vienna: International AtomicEnergy Agency (IAEA) (1995).

M. C. Hernández, et al., Journal of Nuclear Physics,Material Sciences, Radiation and Applications,5(1),25–34 (2017).https://doi.org/10.15415/jnp.2017.51003


Issue


How to Cite
L V Mejía-Ponce; A E Hernández-López; S Reynoso-Cruces; J C Pineda; J A Mendoza-Flores; J Miranda. Improvements to the X-Ray Spectrometer at the Aerosol Laboratory, Instituto De Física, UNAM. J. Nucl. Phy. Mat. Sci. Rad. A. 20186, 57-60.

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...