Thursday 29 June 2017

Theoretical Model to Estimate the Distribution of Radon in Alveolar Membrane Neighborhood

DOI
110.15415/jnp.2016.41006

AUTHORS

J. C. Corona, F. Zaldívar, L. A. Mandujan o-Rosas, F. Méndez, J. Mulia, D. Osorio-González

ABSTRACT

Radon is a naturally occurring radioactive gas which tends to concentrate indoors, easily emanates from the ground into the air, where it disintegrates and emits radioactive particles. It can enter the human body through breathing or ingesting mostly water. When radon inhaled, travels through the respiratory tract to alveoli where the majority is expelled into the environment. Moreover, when ingested in water, it passes into the intestine where it is absorbed and driven from the bloodstream to the lungs; in these organs, due to differences in partial pressures, it is transported to alveoli by simple diffusion process. When radon is not removed, it decays in short-lived solid disintegration products (218Po and 214Po) with high probability of being deposited in biological tissues, causing DNA damage because of the densely ionizing alpha radiation emitted. We propose a semi-empirical, smooth, and continuous pair potential function in order to model the molecular interactions between radon and lung alveolar walls; we use Molecular Dynamics (MD) to determine the gas distribution in an alveolar neighborhood wall, and estimate the quantity thereof it diffuses through the alveolar membrane as a concentration function.

KEYWORDS

Radon distribution; alveolar membrane; molecular dynamics; radon in alveoli

LINK:http://jnp.chitkara.edu.in/abstract.php?id=474#exactabstracts 

REFERENCES


  • Chen, J., Chen, Z., Narasaraju, T.,Jin, N. & Liu, L. Isolation of highly pure alveolar epithelial type I and type II cells from rat lungs. Laboratory Investigation. 84,727–735 (2004). http://dx.doi.org/10.1038/labinvest.3700095
  • Dobbs L.G., Gonzalez, R., Matthay, M.A., Carter, E.P., Allen, L. &Verkman, A.S. Highly water-permeable type I alveolar epithelial cells confer high water permeability between the airspace and vasculature in rat lung. Cell Biology. 95, 2991–2996 (1998). http://dx.doi.org/10.1073/pnas.95.6.2991
  • ] Hill, R. W., Wyse, G. A.& Anderson, M. (2012).Animal Physiology.3rd ed. Sinauer Associates, Inc. Publishers. Sunderland, Massachusetts.
  • Jason R. M. (2016).Prediction of Radon-222, Phase Behavior by Monte Carlo Simulation.J. Chem. Eng. Data. Article ASAP. doi: 10.1021/acs.jced.5b01002. http://dx.doi.org/10.1021/acs.jced.5b01002
  • Johnson, M. D.,Widdicombe, J. H., Allen, L.,Barbrys, P. & Dobbs, L. G. Alveolar epithelial type I cells contain transport proteins and transport sodium, supporting an active role for type I cells in regulation of lung liquid homeostasis. PNAS. 99(4), 1966-1971(2002). http://dx.doi.org/10.1073/pnas.042689399
  • Koulich V. V., Lage, J. L., Hsia, C. C. W. & Johnson, Jr, R. L. A porous medium model of alveolar gas diffusion. J. Porous Media, 2, 263–75 (1999). http://dx.doi.org/10.1615/JPorMedia.v2.i3.4
  • Koulich, V., Lage, JL., Hsia, C.C. W.& Johnson, R.L. Jr. Three-dimensional unsteady simulation of alveolar respiration. J Biomed Eng 124, 609–616 (2002).
  • National Academy of Sciences.(1999). Risk Assessment of Radon in Drinking Water. Committee on Risk Assessment of Exposure to Radon in Drinking Water, National Research Council. National Academy Press. Washington D.C.
  • Nussbaum, E. (1957). Radon Solubility in Body Tissues and in Fatty Acids. Report UR-503. Rochester, NY. University of Rochester.
  • Tchorz-Trzeciakiewicz, D. E. &Solecki, A. T. Seasonal variation of radon concentrations in atmospheric air in the NowaRuda area (Sudety Mountains) of southwest Poland. Geochemical Journal, 45, 455-461 (2011). http://dx.doi.org/10.2343/geochemj.1.0149

No comments:

Post a Comment

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...