Showing posts with label mass attenuation coefficient. Show all posts
Showing posts with label mass attenuation coefficient. Show all posts

Monday 5 February 2018

Mass Attenuation Coefficient Measurements of Some Nanocarbon Allotropes: A New Hope for Better Low Cost Less-Cumbersome Radiation Shielding Over A Wide Energy Range

 

  • E. RajasekharDepartment of Physics, Rayalaseema University, Kurnool, A.P., India
  • K.L. NarasimhamDepartment of Physics, Kakinada Institute of Technology & Science, Divilli, Tirupathi (V) 533433, A.P.,India
  • Aditya D. KurdekarDepartment of Physics, Sri Sathya Sai Institute of Higher Learning, Prashanthinilayam 515134 A.P., India
  • L.A. Avinash ChunduriAndhra Pradesh Medtech Zone, AMTZ, Vishakhapatnam, 530045, A.P. India
  • Sandeep ParnaikAndhra Pradesh Medtech Zone, AMTZ, Vishakhapatnam, 530045, A.P. India
  • K. venkataramaniahDepartment of Physics, Sri Sathya Sai Institute of Higher Learning, Prashanthinilayam 515134 A.P., India
Keywords: Graphene, SWCNTs, MWCNTs, Mass attenuation coefficient, NaI (Tl) detector

Abstract

The mass attenuation coefficients of graphene, MWNTs and, SWNTs have been measured for gamma energy range 356 to 1332 keV from the radioactive sources 60Co, 133Ba and 137Cs using a well calibrated gamma ray spectrometer consisting of a 3 ́ ́x 3 ́ ́ NaI(Tl) scintillation detector coupled to a PC based 8K nuclear Multi Channel Analyser (MCA). In an interesting way results showed that MWNTs had the highest values of mass attenuation coefficients indicating their potential use as the best shielding material.

References

T. Fujikawa and H. Arai, J. Elec. Spect. Relat. Phenom. 174 (2009) 85–92. https://doi.org/10.1016/j.elspec.2009.07.007

T. Fujikawa, J. Elec. Spect. Relat. Phenom. 173 (2009) 51–78. https://doi.org/10.1016/j.elspec.2009.04.011

K. Sawada, S.Murakami and N. Nagaosa, Phys. Rev. Lett. 96 (2006) 154802. https://doi.org/10.1103/PhysRevLett.96.154802

A.N. Lagarkov, and A.K. Sarychev, Phys. Rev. B 53 (1996) 6318–6336. https://doi.org/10.1103/PhysRevB.53.6318

Z. Peng, J. Peng and Y. Ou, Phys. Lett. A 359 (2006) 56–60. https://doi.org/10.1016/j.physleta.2006.05.076

S.B. Tooski, J. Appl. Phys. 109 (2011) 14318–14324. https://doi.org/10.1063/1.3525059

K.L. Dudley, R.W. Lawrence, Nano Lett. 5 (2005) 2131–2134. https://doi.org/10.1021/nl051375r

Z. Liu, G. Bai, Yi. Huang, Y. Ma, F. Du, F. Li, T. Guo, Y.Chen, Carbon. 45 (2007) 821–827. https://doi.org/10.1016/j.carbon.2006.11.020

A.L. Higginbotham, P.G. Moloney, M.C. Waid, J.G. Duque, C. Kittrell, H.K. Schmidt, J.J. Stephenson, S. Arepalli, L.L.Yowell, J.M. Your, Comp. Sci. and tech. 68 (2008) 3087–3092.

Gamma Vision -32, 1998.Ver 5.10.EG & G, ORTEC.

I. Kaplan , Nuclear Physics, Addison-Wesley, New York, 1972.

J.H. Hubbell, and S.M. Seltzer, NIST Standard Database 126, National Institute of Standards and Technology; Gaithersburg, MD, July 2004.

J. Lu., D. Yuan, L. Jie, L. Weinan, E.K. Thomas, Nano Lett.. 8 (2008) 3325–3329. https://doi.org/10.1021/nl801744z

P. R. Bandaru and A. M. Rao, JOM 59, 33 2007 Special Issue on Nanomaterials for Electronic Applications. https://doi.org/10.1007/s11837-007-0036-1

S. H. Park, P. Theilmann, K. Yang, A. M. Rao, and P. R. Bandaru, Applied Physics Letters 96, 043115 2010 https://doi.org/10.1063/1.3292214

L. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd ed. Butterworth-Heinemann, Boston, 1995.

F.J. Garcia-Vidal, J.M. Pitarke, J.B. Pendry, Phys Rev Lett. 78 (1997) 4289–4292. https://doi.org/10.1103/PhysRevLett.78.4289

Z. Ye, W.D. Deering, A. Krokhin, J.A. Roberts, Phys Rev B. 74 (2006) 075425–5. https://doi.org/10.1103/PhysRevB.74.075425



Issue

How to Cite
E. Rajasekhar; K.L. Narasimham; Aditya D. Kurdekar; L.A. Avinash Chunduri; Sandeep Parnaik; K. venkataramaniah. Mass Attenuation Coefficient Measurements of Some Nanocarbon Allotropes: A New Hope for Better Low Cost Less-Cumbersome Radiation Shielding Over A Wide Energy Range . J. Nucl. Phy. Mat. Sci. Rad. A. 20185, 311-317.

Effective Atomic Number Dependence of Radiological Parameters of Some Organic Compounds at 122 KeV Gamma Rays

 

  • Mohinder SinghDepartment of Basic and Applied Sciences, Punjabi university, Patiala, 147002.
  • Akash TondonDepartment of Physics, Punjabi university, Patiala, 147002.
  • Bhajan SinghDepartment of Physics, Punjabi university, Patiala, 147002.
  • B. S. SandhuDepartment of Physics, Punjabi university, Patiala, 147002.
Keywords: Effective atomic number, mass-energy absorption coefficient, mass attenuation coefficient, HVL, CT number

Abstract

Mass attenuation coefficient is a fundamental parameter of radiation interaction, from which the other radiological parameters like half Value Layer [HVL], tenth Value Layer [TVL], total atomic and electronic cross-sections, mass energy absorption coefficient, KERMA, CT number and effective atomic number are deduced. These parameters are extensively required in a number of fields such as diagnostic radiology, gamma ray spectroscopy, fluorescence analysis and reactor shielding. In the present work, mass attenuation coefficients are determined experimentally for some organic compounds at 122 keV incident photons using narrow-beam transmission geometry to establish a relation between effective atomic number (Zeff) and other deduced parameters. The experimental data for all these parameters are compared with the values deduced from WinXcom software package and are found to agree within experimental estimated errors. This study gives some insight about the photon interaction in some organic compounds whose effective atomic numbers match with some human body fluids.

References

G. J. Hine, Phys. Rev., 85, 725 (1952).

J. H. Hubbell, Int. J. Appl. Radiat. Isot., 33, 1269 (1982). https://doi.org/10.1016/0020-708X(82)90248-4

J. H. Hubbell and S. M. Selzer, NISTIR, 5632 (1995).

L. Gerward, N. Guilbert, K. B. Jensen and H. Levring, Radiat. Phys. Chem., 71, 653 (2004).

S. R. Manohara and S. M. Hanagodimath, Nucl. Instr. and Meth. B, 258, 321 (2007). https://doi.org/10.1016/j.nimb.2007.02.101

M. P. Singh, B. S. Sandhu and B. Singh, Phys. Scripta, 76, 281 (2007). https:// doi.org/10.1088/0031-8949/76/4/001

I. Akkurt, S. Kilincarslan and C. Basyigit, Ann. Nucl. Eng., 31, 577 (2004). https://doi.org/10.1016/j.anucene.2003.07.002

I. Han and L. Demir, J. X-Ray Sci. Techno., 18, 39 (2010).

M. Buyukyildiz, M. Kuurudirek, M. Ekici, O. Icelli and Y. Karabul, Prog. Nucl. Energ., 100, 245 (2017). https://doi.org/10.1016/j.pnucene.2017.06.014

S. R. Manohara, S. M. Hanagodimath and L. Gerward, J. Nucl. Mater., 393, 465 (2009). https://doi.org/10.1016/j.jnucmat.2009.07.001

D. F. Jackson and D. J. Hawkes, Phys. Rep., 70, 169 (1981). https://doi.org/10.1016/0370-1573(81)90014-4

D. C. Creagh, Nucl. Instrum. Methods A, 255, 1 (1987). https://doi.org/10.1016/0168-9002(87)91064-3



Issue

How to Cite
Mohinder Singh; Akash Tondon; Bhajan Singh; B. S. Sandhu. Effective Atomic Number Dependence of Radiological Parameters of Some Organic Compounds at 122 KeV Gamma Rays . J. Nucl. Phy. Mat. Sci. Rad. A. 20185, 299-310.

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...