Showing posts with label Preformation Probability. Show all posts
Showing posts with label Preformation Probability. Show all posts

Wednesday 29 August 2018

The Three-Body Structure of 2n and 2p Halo Nuclei I. Sreeja and M. Balasubramaniam


A three-cluster model developed for ternary fission studies has been applied for the first time to study the three-body structure of 2n and 2p halo nuclei. For the experimentally known 2n, 2p halo nuclei, all possible ternary fragmentation potential energy surface (PES) is calculated. The two-body breakup reported earlier, clearly indicated a strong minimum in the PES corresponding to 1n/1p and/or 2n/2p cluster plus core configuration. However, the present calculations of PES reveal that, the three- body breakup does not result always with 2n and/or 2p as a cluster. A 1n and/or 1p cluster along with the core is initially formed, and then the core loses one nucleon to make either a 2n plus core or 2p plus core structure. The results are substantiated with the calculations of preformation probability calculated within quantum mechanical fragmentation theory.



URLhttp://dspace.chitkara.edu.in/jspui/bitstream/123456789/707/1/002JNP_Sreeja.pdf
ISSNPrint : 2321-8649, Online : 2321-9289
DOIhttps://doi.org/10.15415/jnp.2018.52024
REFERENCES
  • I. Tanihata, H. Hamagaki, O. Hashimoto, S. Nagamiya et al., Phys. Lett. 160B, 380 (1985).
  • I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida et al., Phys. Rev. Lett. 55, 2676 (1985). https://doi.org/10.1103/PhysRevLett.55.2676
  • I. Tanihata, T. Kobayashi, O. Yamakawa, S. Shimoura et al., Phys. Lett. B 206, 592 (1988).
  • M. Brodeur, T. Brunner, C. Champagne, S. Ettenenauer et al., Phys. Rev. Lett. 108, 052504 (2012). https://doi.org/10.1103/PhysRevLett.108.052504
  • B. V. Danilin, I. J. Thompson, J. S. Vaagen and M. V. Zhukov, Nucl. Phys. A 632, 383 (1998). https://doi.org/10.1016/S0375-9474(98)00002-5
  • R. K. Gupta, M. Balasubramaniam, R. K. Puri and W. Scheid, J. Phys. G: Nucl. Part. Phys. 26, L23 (2000). https://doi.org/10.1088/0954-3899/26/2/102
  • R. K. Gupta, M. Balasubramaniam et al., J. Phys. G: Nucl. Part. Phys. 32, 565 (2006). https://doi.org/10.1088/0954-3899/32/4/012
  • G. Sawhney, M. K. Sharma and R. K. Gupta J. Phys. G: Nucl. Part. Phys 41, 055101 (2014). https://doi.org/10.1088/0954-3899/41/5/055101
  • R. K. Gupta, Sushil Kumar et al., J. Phys. G: Nucl. Part. Phys. 28, 699 (2002). https://doi.org/10.1088/0954-3899/28/4/309
  • W. Horiuchi and Y. Suzuki, Phys. Rev. C 74, 034311 (1961). https://doi.org/10.1103/PhysRevC.74.034311
  • ] T. Frederico, M. T. Yamashita and Lauro Tomio, Nucl. Phys. A 787, 561c-568c (2007). https://doi.org/10.1016/j.nuclphysa.2006.12.085
  • I. Mazhumdar, Pramana - J. Phys., 75, 81 (2010). https://doi.org/10.1007/s12043-010-0067-y
  • Shi-Sheng Zhang, M. S. Smith, Zhong-Shu Kang and Jie Zhao, Phys. Lett. B 730, 30 (2014).
  • L. A. Souza, F. F. Bellotti and T. Frederico, J. Phys. 630, 012043 (2015). [15] Y. Togano, T. Nakamura, Y. Kondo, J. A. Tostevin et al., Phys. Lett. B 761, 412 (2016). https://doi.org/10.1016/j.physletb.2016.08.062 [
  • E. Rydberg, C. Forssen and L. Platter, Few Body Syst. 58, 143 (2017). https://doi.org/10.1007/s00601-017-1307-1
  • W. Schwab et al., Z. Phys. A 350, 283 (1995). https://doi.org/10.1007/BF01291183
  • A. Ozawa et al., Phys. Lett. B 334, 18 (1994). https://doi.org/10.1016/0370-2693(94)90585-1
  • Z. Ren, B. Chen, Z. Ma and G. Xu, Phys. Rev. C 53, 572 (1996). https://doi.org/10.1103/PhysRevC.53.R572
  • R. Kanungo, M. Chiba, S. Adhikari, D. Fang et al., Phys. Lett. B 571, 21 (2003). https://doi.org/10.1016/j.physletb.2003.07.050
  • R. Kanungo, Nucl. Phys. A 738, 293 (2004). https://doi.org/10.1016/j.nuclphysa.2004.04.048
  • L. V. Grigorenko, Yu. L. Parfenova and M. V. Zhukov, Phys. Rev. C 71, 051604(R) (2005).
  • W. Geithner, T. Neff, G. Audi, K. Blaum et al., Phys. Rev. Lett. 101, 252502 (2008). https://doi.org/10.1103/PhysRevLett.101.252502
  • W.S. Hwash, Int. J. Mod. Phys. E 25, 1650105 (2016). https://doi.org/10.1142/S0218301316501056
  • R. K. Gupta, Proceedings of the Vth International Conference on Nuclear Reaction Mechanisms, Varenna, Italy (1988) p. 416.
  • S. S. Malik and R. K. Gupta, Phys. Rev. C 39 1992 (1989). https://doi.org/10.1103/PhysRevC.39.1992
  • R. K. Gupta, W. Scheid, and W. Greiner, J. Phys. G: Nucl. Phys. 17 1731(1991). https://doi.org/10.1088/0954-3899/17/11/018
  • S. Kumar and R. K. Gupta, Phys. Rev. C 55 218 (1997). https://doi.org/10.1103/PhysRevC.55.218
  • R. K. Gupta, in Heavy Elements and Related New Phenomena, edited by W. Greiner and R.K. Gupta (World Scientific, Singapore, 1999), Vol. II, p. 730. https://doi.org/10.1142/9789812816634_0020
  • K. Manimaran and M. Balasubramaniam, Phys. Rev. C 79, 024610 (2009). https://doi.org/10.1103/PhysRevC.79.024610
  • K. Manimaran and M. Balasubramaniam, Eur. Phys. J. A 45, 293 (2010). https://doi.org/10.1140/epja/i2010-11000-7
  • K. Manimaran and M. Balasubramaniam, J. Phys. G: Nucl. Part. Phys. 37, 045104 (2010). https://doi.org/10.1088/0954-3899/37/4/045104
  • K. Manimaran and M. Balasubramaniam, Phys. Rev. C 83, 034609 (2011). https://doi.org/10.1103/PhysRevC.83.034609
  • K. R. Vijayaraghavan, W. von Oertzen and M. Balasubramaniam, Eur. Phys. J. A 48, 27 (2012). https://doi.org/10.1140/epja/i2012-12027-4
  • K. R. Vijayaraghavan, M. Balasubramaniam and W. von Oertzen, Phys. Rev. C 90, 024601 (2014). https://doi.org/10.1103/PhysRevC.90.024601
  • M. Balasubramaniam, K. R. Vijayaraghavan and C. Karthickraj, Pramana - J. Phys., 85, 423 (2015).
  • M. Balasubramaniam, K. R. Vijayaraghavan and K. Manimaran, Phys. Rev. C 93, 014601 (2016). https://doi.org/10.1103/PhysRevC.93.014601
  • G. Audi, F. G. Kondev, M. Wang, B. Pfeiffer, X. Sun, J. Blachot and M. MacCormik, Chin. Phys. C 36(12), 1157 (2012) https://doi.org/10.1088/1674-1137/36/12/
  • P. Mller, J. R. Nix, W. D. Myers, W. J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995)
  • J. Blocki, J. Randrup, W. J. Swiatecki and C. F. Tsang, Ann. Phys. (NY) 105, 427 (1977). https://doi.org/10.1016/0003-4916(77)90249-4
  • H. Kröger and W. Scheid, J. Phys. G 6, L85 (1980). https://doi.org/10.1088/0305-4616/6/4/006

Monday 5 February 2018

Clustering aspects in 20Ne Alpha-conjugate Nuclear System

 

  • Manpreet KaurDepartment of Physics, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, India
  • Birbikaram SinghDepartment of Physics, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, India
  • S.K. PatraInstitute of Physics, Bhubaneswar- 751005, India
  • Raj K. GuptaDepartment of Physics, Panjab University, Chandigarh-160014, India
Keywords: Clusters, Alpha conjugate nuclear system, Preformation probability

Abstract

The clustering aspects in alpha-conjugate nuclear system 20Ne has been investigated comparatively within microscopic and macroscopic approaches of relativistic mean field theory (RMFT) and quantum mechanical fragmentation theory (QMFT), respectively. For the ground state of 20Ne, the matter density distribution calculated within RMFT, depict the trigonal bipyramidal structure of 5α’s and within QMFT, the equivalent α+16O cluster configuration is highly preformed. For excited state corresponding to experimental available energy, the QMFT results show that in addition to α+16O clusters, other xα-type clusters (x is an integer) are also preformed but in addition np-xα type (n, p are neutron and proton, respectively) 10B clusters are having relatively more preformation probability, due to the decreased pairing strength in liquid drop energies at higher temperature. These results are in line with RMFT calculations for intrinsic excited state which show two equal sized fragments, probably 10B clusters.

References

L. R. Hafstad and E. Teller, Phys. Rev. 54, 681 (1938) https://doi.org/10.1103/ PhysRev.54.681; F. Hoyle, D. N. F Dunbar, W. A. Wenzel, and W. Whaling, Phys. Rev. 92, 1095c (1953); Minutes of the New Mexico Meeting, Alberquerque, September 2–5; C. W. Cook, W. A. Fowler, and T. Lauritsen, Phys. Rev. 107, 508 (1957).

K. Ikeda, N. Takigawa, and H. Horiuchi, Prog. Theor. Phys. Suppl. E68, 464 (1968) https://doi.org/10.1143/PTPS.E68.464; W. Von Oertzen et al., Eur. Phys. J.A 11, 403 (2001) https://doi.org/10.1007/s100500170052; W. Von Oertzen, M. Freer, and Y. Ka-Enyo, Phys. Rep. 432, 43 (2006) https://doi.org/10.1016/j.physrep.2006.07.001.

J. P. Ebran, E. Khan, T. Niksic, and D.Vretenar, Nature 487, 341 (2012) https:// doi.org/10.1038/nature11246; Phys. Rev. C 87, 044307 (2013) https://doi.org/10.1103/PhysRevC.87.044307.

R. K. Sheline and K. Wildermuth, Nucl. Phys. 21, 196 (1960) https://doi. org/10.1016/0029-5582(60)90046-8; F. D. Becchetti, K. T. Hecht, J. Janecke, and D. Overway, Nucl. Phys. A 339, 132 (1980) https://doi.org/10.1016/03759474(80)90246-8; D. Jenkins, J. Phys. Conf. Series 436, 012016 (2013) https://doi.org/10.1088/1742-6596/436/1/012016.

T. Yahmaya, Phys. Lett. B 306, 1 (1993) https://doi.org/10.1016/03702693(93)91128-A; M. Freer and A. C. Merchant, J. Phys. G 23, 261 (1997) https://doi.org/10.1088/0954-3899/23/3/002; M. Freer, Rep. Prog. Phys. 70, 2149 (2007) https://doi.org/10.1088/0034-4885/70/12/R03; E. D. Johnson et al., Eur. Phys. J. A 42, 135 (2009) https://doi.org/10.1140/epja/i2009-10887-1.

Y . Kanada-En’yo, M. Kimura, and A. Ono, Prog. Theor. Exp. Phys. 01A202 (2012).

H. Feldmeier, J. Schnack, Rev. Mod. Phys. 72, 655 (2000) https://doi.org/10.1103/RevModPhys.72.655.

P. Arumugam et al., PRC 71, 064308 (2005) https://doi.org/10.1103/PhysRevC.71.064308;

B. B. Singh, M. Kaur, V. Kaur, and R. K. Gupta, EPJ Web Conf. 86, 00048 (2015); JPS Conf. Proc 6, 030001 (2015); M. Kaur, B.B. Singh, S.K. Patra, and R.K. Gupta, Phys. Rev. C 95, 014611 (2017) https://doi.org/10.1103/ PhysRevC.95.014611; Proc. DAE Symposium on Nucl. Phys. 62, 506 (2017).

W. B. He et al., arXiv:1602.08955v3 [nucl-th] June, 2016.

Y. K. Gambhir, P. Ring, and A. Thimet, Ann. Phys. (NY) 198, 132 (1990) https:// doi.org/10.1016/0003-4916(90)90330-Q; C. E. Price and G. E. Walker, Phys. Rev. C 36, 354 (1987) https://doi.org/10.1103/PhysRevC.36.354; Y. Sugahara and H. Toki, Nucl. Phys. A579, 557 (1994) https://doi.org/10.1016/03759474(94)90923-7; P. K. Panda et al., Int. J. Mod. Phys. E 6, 307 (1997) https://doi.org/10.1142/S0218301397000202.

B.K. Sharma et al., JPG: Nucl. Part. Phys. 32, L1 (2006) https://doi.org/10.1088/0954-3899/32/1/L01.

J. Maruhn and W. Griener, Phys. Rev. Lett. 32, 548 (1974) https://doi.org/10.1103/PhysRevLett.32.548.

Raj K. Gupta et al., Phys. Rev. Lett. 35, 353 (1975) https://doi.org/10.1103/ PhysRevLett.35.353; Phys. Lett. B 60, 225 (1976) https://doi.org/10.1016/03702693(76)90286-0; Phys. Lett. B 67, 257 (1977) https://doi.org/10.1016/03702693(77)90364-1; Z. Physik A 283, 217 (1977) https://doi.org/10.1007/BF01418714.

H. Kröger and W. Scheid, J. Phys. G: Nucl. Phys. 6, L85 (1980) https://doi.org/10.1088/0305-4616/6/4/006.

W. D. Myers and W. D. Swiatecki, Nucl. Phys. 81, 1 (1966) https://doi.org/10.1016/0029-5582(66)90639-0.

J. Blocki, J. Randrup, W. J. Swiatecki, and C. F. Tsang, Ann. Phys. (NY) 105, 427 (1977) https://doi.org/10.1016/0003-4916(77)90249-4.

M. Bansal, R. Kumar, and R. K. Gupta, J. Phys.: Conf. Ser. 321, 012046 (2011) https://doi.org/10.1088/1742-6596/321/1/012046.

M. M. Coimbra et al., Nucl. Phys. A 535, 161 (1991) https://doi.org/10.1016/0375-9474(91)90521-7.

G.V. Rogachev et al., Prog. Theor. Phys. Suppl. 196, 184 (2012) https://doi.org/10.1143/PTPS.196.184; J. Phys.: Conf. Ser. 569, 012004 (2014) https://doi.org/10.1088/1742-6596/569/1/012004.


Issue


How to Cite
Manpreet Kaur; Birbikaram Singh; S.K. Patra; Raj K. Gupta. Clustering Aspects in 20Ne Alpha-Conjugate Nuclear System. J. Nucl. Phy. Mat. Sci. Rad. A. 20185, 319-326.

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...