Showing posts with label Gamma Rays. Show all posts
Showing posts with label Gamma Rays. Show all posts

Tuesday 8 September 2020

A GEANT4 Study of a Gamma-ray Collimation Array

 

  • J A López
    Physics Department, University of Texas at El Paso, El Paso, Texas, 79968 U.S.A.
  • S S Romero González
    Physics Department, University of Texas at El Paso, El Paso, Texas, 79968 U.S.A.
  • O Hernández Rodríguez
    Physics Department, University of Texas at El Paso, El Paso, Texas, 79968 U.S.A.
  • J Holmes
    Physics Department, Arizona State University, Tempe, Arizona, 85281 U.S.A.
  • R Alarcón
    Physics Department, Arizona State University, Tempe, Arizona, 85281 U.S.A.
Keywords: Proton therapy, Collimators, Gamma rays, GEANT4

Abstract

Proton beam therapy uses high-energy protons to destroy cancer cells which are still uncertain about where in the body they hit. A possible way to answer this question is to detect the gamma rays produced during the irradiation and determine where in the body they are produced. This work investigates the use of collimators to determine where the proton interactions occur. GEANT4 is used to simulate the gamma production of a source interacting with a collimator. Each event simulates a number of gammas obtained as a function of the position along the detector. Repeating for different collimator configurations can thus help determine the best characteristics of a detector device.

References

K. A. Camphausen, R. C. Lawrence, (2009). “Principles of Radiation Therapy”. In R. Pazdur, L. D. Wagman, K. A. Camphausen, W. J. Hoskins, (eds.) Cancer Management: A Multidisciplinary Approach. 11th ed., Cmp. United Business Media. ISBN-13: 978-1891483622.

W. P. Levin, H. Kooy, J. S.Loeffler, T. F., DeLaney, Proton Beam Therapy, British Journal of Cancer 93, 849 (2005). https://doi.org/10.1038/sj.bjc.6602754

James Metz, (2006). “Differences Between Protons and X-rays”. Abramson Cancer Center of the University of Pennsylvania. http://www.oncolink.org/treatment/article.cfm?c=9&s=70&id=210. Accessed 4 February 2018.

W. D. Newhauser and R. Zhang, Phys. Med. Biol. 60, R155 (2015). https://doi.org/10.1088/0031-9155/60/8/R155

Basics physics of nuclear medicine/interaction of radiation with matter. From https://en.wikibooks.org/wiki/Basic_Physics_of_Nuclear_Medicine/ Interaction_of_Radiation_with_Matter. Accessed 15/9/2019

M. Chiari, Joint ICTP-IAEA Workshop on Nuclear Data for Analytical Applications. (2013) http://indico.ictp.it/event/a12218/session/23/contribution/14/material/0/0.pdf. Accessed 15 October 2019.

Geant4 official website. http://geant4.cern.ch/support/introductionToGeant4.shtml. Accessed 1 February 2018.

Fiber Optical Networking. http://www.fiber-opticalnetworking.com/getting-know-fiber-collimator.html. Accessed 9 February 2018.

J. T. Bushberg, J. A. Seibert, E. M. Leidholdt, and J. M. Boone, “The Essential Physics of Medical Imaging”, Second ed., Philadelphia: Lippincott Williams & Wilkins, 2006, p. 261. ISBN 9780781780575.

S. S. Romero Gonzalez, (2018). Geant4 study of a gamma-ray collimator for proton therapy. M.S. Thesis, University of Texas at El Paso. https://digitalcommons.utep.edu/dissertations/AAI10822888/. Accessed 10 September 2019. 

 

 

How to Cite
J A López; S S Romero González; O Hernández Rodríguez; J Holmes; R Alarcón. A GEANT4 Study of a Gamma-Ray Collimation Array. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 217-221.

Monday 7 September 2020

Response to Neutrons and γ-rays of Two Liquid Scintillators

 

  • Hector Rene Vega-Carrillo
    Academic Unit of Nuclear Studies of the University Autonomous of Zacatecas, C. Cipres 10,Fracc. La Peñuela, 98060 Zacatecas, Zac. Mexico.
  • Martha Isabel Escalona-Llaguno
    Academic Unit of Nuclear Studies of the University Autonomous of Zacatecas, C. Cipres 10,Fracc. La Peñuela, 98060 Zacatecas, Zac. Mexico.
  • Luis Hernandez-Adame
    CONACyT - Center for Biological Research of the Northwest, S.C., Av. Instituto Politecnico Nacional 195, Col. Playa Palo de Santa Rita Sur 23090 La Paz, BCS. Mexico
  • Sergio M. Sarmiento-Rosales
    Academic Unit of Nuclear Studies of the University Autonomous of Zacatecas, C. Cipres 10,Fracc. La Peñuela, 98060 Zacatecas, Zac. Mexico.
  • Claudia A. Márquez-Mata
    Academic Unit of Nuclear Studies of the University Autonomous of Zacatecas, C. Cipres 10,Fracc. La Peñuela, 98060 Zacatecas, Zac. Mexico.
  • Guillermo E. Campillo-Rivera
    Academic Unit of Nuclear Studies of the University Autonomous of Zacatecas, C. Cipres 10,Fracc. La Peñuela, 98060 Zacatecas, Zac. Mexico.
  • V.P. Singh
    Karanatak University, Dharwad, Karnataka, India-580003
  • Teodoro Rivera-Montalvo
    Center for Research in Applied Science and Advanced Technology - Legaria Unit of IPN, Av. Legaria 694, Col. Irrigación, 11500 Ciudad de Mexico, Mexico
  • Segundo Agustin Martínez-Ovalle
    Pedagogical and Technological University of Colombia, Tunja, Colombia
Keywords: Response, Liquid Scintillator, Detectors, neutrons, Gamma Rays, UltimaGold, Optiphase

Abstract

UltimaGoldTM AB and OptiphaseTrisafe are two liquid scintillators made by Perkin Elmer and EG & G Company respectively. Both are commercially promoted as scintillation detectors for α and β particles. In this work, the responses to γ-rays and neutrons of UltimaGoldTM AB and OptiphaseTriSafe liquid scintillators, without and with reflector, have been measured aiming to use these scintillators as γ-rays and neutron detectors. Responses to γ-rays and neutrons were measured as pulse shape spectra in a multichannel analyzer. Scintillators were exposed to gamma rays produced by 137Cs, 54Mn, 22Na and 60Co sources. The response to neutrons was obtained with a 241AmBe neutron source that was measured to 25 and 50 cm from the scintillators. The pulse height spectra due to gamma rays are shifted to larger channels as the photon energy increases and these responses are different from the response due to neutrons. Thus, UltimaGoldTM AB and OptiphaseTrisafe can be used to detect γ-rays and neutrons.

 

References

V.A. Baskov and V.V. Polyansky, Bull. Lebedev Phys. Inst., 45, 123 (2018).

H.R. Vega-Carrillo, V.M. Hernández-Dávila, T. Rivera and A. Sánchez, Rad. Phys. Chem., 95, 122 (2014). https://doi.org/10.1016/j.radphyschem.2013.05.001.

J.C. McDonald, B.R.L. Siebert and W.G. Alberts, Nucl. Instrum. Meth. Phys. Res. A 476, 347 (2002). https://doi.org/10.1016/S01689002(01)01460-7.

G.F. Knoll, Radiation Detection and Measurement. (John Wiley & Sons, Michigan, 2010).

A.J. Peurrung, Nucl. Instrum. Meth. Phys. Res. A 443, 400 (2000).

https://doi.org/10.1016/S0168-9002(99)01165-1.

A.V. Zhirkin et al., Nucl. Fus., 57, 066044 (2017). https://doi.org/10.1088/1741-4326/aa69d4.

T. Nishitani et al., Fus. Eng. Des., 136, 210 (2018). https://doi.org/10.1016/j.fusengdes.2018.01.053.

T. Nishitani, K. Ogawa and M. Isobe, Fus. Eng. Des., 123, 1020 (2017). https://doi.org/10.1016/j.fusengdes.2017.02.038.

] L. Liu, A. Liu, S. Bai, L. Lv, P. Jin and X. Ouyang, Sci. Rep., 7, 13376 (2017). https://doi.org/10.1038/s41598-017-13715-3.

M.J. Devlin et al., Nucl. Data Sheets, 148, 322 (2018). https://doi.org/10.1016/j.nds.2018.02.008.

T. Zhu et al., Nucl. Instrum. Meth. Phys. Res. A 848, 137 (2017). https://doi.org/10.1016/j.nima.2016.12.016.

RV.D. Ryzhikov, S.V. Naydenov, T. Pochet, G.M. Onyshchenko, L.A. Piven and C.F. Smith, IEEE Trans. Nucl. Sci., 65, 2547 (2018). https://doi.org/10.1109/TNS.2018.2825642.

K.A. Guzmán-García, H.R. Vega-Carrillo, E. Gallego, J.A. González, R. Méndez,-Villafañe, A. Lorente and S. Ibañez-Fernandez, Rad. Meas., 107, 58 (2017). https://doi.org/10.1016/j.radmeas.2017.11.001.

K.A. Guzmán-García, H.R. Vega-Carrillo, E. Gallego, A. Lorente, R. Méndez-Villafañe J.A. González and S. Ibañez-Fernandez, Appl. Rad. Isot., 117, 58 (2016). https://doi.org/10.1016/j.apradiso.2016.03.015.

F. D´Errico, A. Chierici, M. Gattas-Sethi, R. Goldston and A. Glaser, Rad. Prot. Dosim., 180, 210 (2018). https://doi.org/10.1093/rpd/ncy037.

O.V. Hoey, F. Vanhavere and L. Verbraeken, Rad. Prot. Dosim., 180, 85 (2018). https://doi.org/10.1093/rpd/ncx224.

V. Gracanin et al., Rad. Meas., 106, 391 (2017). https://doi.org/10.1016/j.radmeas.2017.01.004.

F.D. Amaro, C.M.B. Monteiro, J.M.F. dos Santos and A. Antognini, Sci. Rep., 7, 41699 (2017). https://doi.org/10.1038/srep41699.

J.L. Tain et al., Acta Phys. Pol. B 49, 417 (2018). https://doi.org/10.5506/APhysPolB.49.417.

Miramonti, L., International Journal of Modern Physics A, 32, 1743010 (10 pages) (2017). https://doi.org/10.1142/S0217751X17430102.

P. Agnes et al., J. Instrum., 12, T12004 (2017). https://doi.org/10.1088/1748-0221/12/12/T12004.

I. Mor, D. Vartsky, V. Dangendorf, K. Tittelmeier, M.B. Goldberg, D. Bar and M. Brandis, J. Instrum., 12, C12022 (2017). https://doi.org/10.1016/j.nima.2018.02.113.

P. Roy, K. Banerjee, A.K. Saha, C. Bhattacharya, J.K. Meena, P. Bhaskar, S. Mukhopadhyay and S. Bhattacharya, Nucl. Instrum. Meth. Phys. Res. A 901, 198 (2018). https://doi.org/10.1016/j.nima.2018.06.007.

PL. Pujol and J.A. Sanchez-Cabeza, J. Radioanal. Nucl. Chem., 242, 391 (1999). https://doi.org/10.1007%2FBF02345568.

A. Srivastava, V. Tuli and U.W. Scherer, Radiochim. Acta, 106, 787 (2018). https://doi.org/10.1515/ract-2017-2848.

R. Broda, K. Małetka, T. Terlikowska and P. Cassette, Appl. Rad. Isot., 56, 285 (2002). https://doi.org/10.1016/S0969-8043(01)00202-0.

F. Verrezen, H. Loots and C. Hurtgen, Appl. Rad. Isot., 66, 1038 (2008). https://doi.org/10.1016/j.apradiso.2008.02.050.

S.P.D. Bhade, P.J. Reddy, S. Anilkumar, R.K. Singhal and D.D.J. Rao,. Radioanal. Nucl. Chem., 315, 13 (2018). https://doi.org/10.1007/s10967-017-5643-x.

H. Kafa, J.T.W. Wang, N. Rubio, K. Venner, G. Anderson, E. Pach, B. Ballesteros, J.E. Preston, N.J. Abbott and K.T. Al-Jamal, Biomaterials 53, 437 (2015). https://doi.org/10.1016/j.biomaterials.2015.02.083.

C.C. Wang, M. Seidaliev and A. Mandapaka, Health Phys., 94, 440 (2008). https://doi.org/10.1097/01.HP.0000300493.53385.5d.

F.D. Becchetti, R.S. Raymond, R.O. TorresIsea, A. Di Fulvio, S.D. Clarke, S.A. Pozzi and M. Febbraro, Nucl. Instrum. Meth. Phys. Res. A 820, 112 (2016). https://doi.org/10.1016/j.nima.2016.02.058

 

Issue
 
 
How to Cite
Hector Rene Vega-Carrillo; Martha Isabel Escalona-Llaguno; Luis Hernandez-Adame; Sergio M. Sarmiento-Rosales; Claudia A. Márquez-Mata; Guillermo E. Campillo-Rivera; V.P. Singh; Teodoro Rivera-Montalvo; Segundo Agustin Martínez-Ovalle. Response to Neutrons and γ-Rays of Two Liquid Scintillators. J. Nucl. Phy. Mat. Sci. Rad. A. 2019, 6, 171-178.
 

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...