Showing posts with label Dosimeter. Show all posts
Showing posts with label Dosimeter. Show all posts

Monday 6 August 2018

Study of Solid-State Radiolysis of Behenic, Fumaric, and Sebacic Acids for their Possible Use as Gamma Dosimeters Measured Via ATR-FT-IR Spectroscopy

 

  • J. Cruz-CastañedaInstitute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico; Master’s and PhD Program in Chemical Sciences, National Autonomous University of Mexico (UNAM). PO Box 70-543, 04510 Mexico City, Mexico
  • A. L. Meléndez-LópezInstitute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico; Master’s and PhD Program in Chemical Sciences, National Autonomous University of Mexico (UNAM). PO Box 70-543, 04510 Mexico City, Mexico
  • A. HerediaInstitute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico
  • S. RamosbernalInstitute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico
  • A. Negrón-MendozaInstitute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico
Keywords: dosimeter, carboxylic acid, gamma radiation, ATR-FT-IR spectroscopy

Abstract

The intensive use of ionizing radiation has promoted the constant investigation of adequate dosimetric systems in the measurement of doses applied in irradiated products. The objective of this work is to propose gamma dosimetric systems, using carboxylic acids in a solid state and measuring the change via infrared spectroscopy (carboxylic acid/ ATR-FT-IR1). We worked with three systems: (1) behenic acid/ATR-FT-IR, (2) sebacic acid/ATR-FT-IR, and (3) fumaric acid/ATR-FT-IR. The change in absorbance corresponding to the stretching vibration frequency of the carbonyl group to the absorbed dose (in the range of kGy) was measured. The results showed that the acid/ATR-FT-IR systems have a linear response with respect to the absorbed dose, for behenic acid/ATR-FT-IR from 0 to 122 kGy, for ATR-FT-IR sebacic acid from 0 to 61 kGy, and for fumaric acid/ATR-FT-IR from 0 to 34 kGy. The results indicated that the linear response of the absorbance dose in the three systems allows us to continue studying other variables to be able to propose them as chemical dosimeters.


References

K. Van Laere, J. Buysse, and P. Berkvens, Int. J. Radiat. Appl. Instrumentation. Part A. Appl. Radiat. Isot. 40, 885 (1989). https://doi.org/10.1016/0883-2889(89)90012-9

A. R. Jones, Radiat.Res. 47, 35 (1971). https://doi.org/10.2307/3573286

A. Negron-Mendoza and S. Ramos-Bernal, Radiat. Phys. Chem. 52, 395 (1998). https://doi.org/10.1016/S0969-806X(98)00059-0

J. Cruz-Castañeda, A. Negron-Mendoza, and S. Ramos-Bernal, AIP Conf. Proc. 49, 49 (2013).

H. Fricke and E. J. Hart, in Radiat. Dosim., edited by F. H. Attix; W. C Roesch, 2nd ed. (Academic Press, New York, 1966).

A. Meléndez-López, A. Negrón-Mendoza, V. GómezVidales, R. M. Uribe, and S. Ramos-Bernal, Radiat. Phys. Chem. 104, 230 (2014). https://doi.org/10.1016/j.radphyschem.2014.03.012




Issue


How to Cite
J. Cruz-Castañeda; A. L. Meléndez-López; A. Heredia; S. Ramosbernal; A. Negrón-Mendoza. Study of Solid-State Radiolysis of Behenic, Fumaric, and Sebacic Acids for Their Possible Use As Gamma Dosimeters Measured Via ATR-FT-IR Spectroscopy. J. Nucl. Phy. Mat. Sci. Rad. A. 20186, 81-85.

Synthesis of MgB4O7:Dy3+and Thermoluminescent Characteristics at Low Doses of Beta Radiation

 

  • O Legorreta-AlbaInstitute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico; Chemistry Faculty, National Autonomous University of Mexico (UNAM), 3000 Universidad avenue, 04510 Mexico City, México
  • E Cruz-ZaragozaInstitute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico
  • D DíazChemistry Faculty, National Autonomous University of Mexico (UNAM), 3000 Universidad avenue, 04510 Mexico City, México
  • J Marcazzó"Arroyo Seco” Institute of Physics (Uncpba) and Cificen (Uncpba-Cicpba Conicet), Pinto 399, 7000 Tandil, Argentina
Keywords: Magnesium tetraborate, Dysprosium, Thermoluminescence, Beta-radiation, Dosimeter

Abstract

The synthesis and thermoluminescent characteristics of dysprosium-doped MgB4O7 are analyzed. The phosphor at different concentrations (0, 0.1, 0.5, 1, 2 and 4 mol%) of the dopant was prepared by the solution-assisted method. The magnesium borate compound was confirmed by X-ray diffraction. The annealing and dopant concentrations effects on the crystalline matrix were investigated. The highest thermoluminescent sensitivity was found with 450°C of annealing temperature and at high Dy3+ concentration too. The un-doped MgB4O7 phosphor shows a broad glow curve which peaked at 199°C and about 306 °C. Introducing Dy3+ dopant in the matrix that behavior was strongly changed. The wide glow curve shows three glow peaks; two small shoulders at 124 and 195 °C, and a highest peak between 323 and 336 °C temperature range. A large linear dose-response (5 – 2000 mGy) beta dose was obtained. The complex glow curves were deconvolved and the kinetics parameters were determined considering the general order kinetics model.


References

O. Annalakshmi, M. T. Jose, U. Madhusoodanan, J. Sridevi, B. Venkatraman, G. Amarendra, A. B. Mandal, Radiat. Eff. Defects Solids, 169(7), 636–645 (2014). https://doi.org/10.1080/10420150.2014.918128

A. J. J. Bos, Nucl. Instrum. Methods B, 184, 3–28 (2001). https://doi.org/10.1016/S0168-583X(01)00717-0

L. L. Campos, O. O.Fernandes, Radiat. Prot. Dosim., 33(1/4), 111–113 (1990). https://doi.org/10.1093/oxfordjournals.rpd.a080769

G. Cedillo Del Rosario, E. Cruz-Zaragoza, M. García Hipólito, J. Marcazzó J. M. A. Hernández, H. S. Murrieta, Applied Radiation and Isotopes, 127, 103–108 (2017). https://doi.org/10.1016/j.apradiso.2017.05.018

E. Cruz-Zaragoza, G. Cedillo Del Rosario, M. García Hipólito, J. Marcazzó, J. M. A. Hernández, E. Camarillo, H. S. Murrieta, J. Nucl. Phys. Mat. Sci. Rad. App., 5(1), 169–178 (2017). https://doi.org/10.15415/jnp.2017.51016

E. Cruz-Zaragoza, C. Furetta, J. Marcazzó, M. Santiago, C. Guarneros, M. Pacio, R. Palomino, J. Lumin., 179, 260–264 (2016). https://doi.org/10.1016/j.jlumin.2016.07.003

T. Depci, G. Ozbayoglu, A. Yilmaz, Metall. Mater. Trans. A, 41(10), 2284–2594 (2010). https://doi.org/10.1007/s11661-010-0341-0

M. Dogan, A. N. Yazici, Journal of Optoelectronics and Advanced Materials, 11(11), 1783–1787 (2009).

C. M. H. Driscoll, S. J. Mundy, J. M. Elliot, Radiat. Prot. Dosim., 1(2), 135–137 (1981).

D. Evis, A. Yucel, N. Kizilkaya, et al., Applied Radiation and Isotopes, 116, 138–142 (2016). https://doi.org/10.1016/j.apradiso.2016.08.004

F. Fukuda, N. Takeuchi, J. Mater. Sci. Lett., 8, 1001– 1002 (1989). https://doi.org/10.1007/BF01730467

C. Furetta, Handbook of Thermoluminescence. Singapore: World Scientific Publishing Co. Pte. Ltd. (2003). https://doi.org/10.1142/5167

C. Furetta, G. Kitis, P. S. Weng, T. S. Chu, Nucl. Instrum. Methods A, 420, 441–445 (1999). https://doi.org/10.1016/S0168-9002(98)01198-X

T. Hitomi, Radiothermoluminescence Dosimeter and Materials. U.S. Patent Filed no. 213 950 (1971).

M. Israeli, N. Kristianpoller, R. Chen, Phys. Rev. B, 6(12), 4861–4867 (1972). https://doi.org/10.1103/PhysRevB.6.4861

S. P. Lochab, A. Pandey, P. D. Sahare, R. S. Chauhan, N. Salah, R. Ranjan, Phys. Status Solidi A, 204(7), 2416–2425 (2007). https://doi.org/10.1002/pssa.200622487

C. F. May, J. A. Partridge, J. Chem. Phys., 40, 1401–1409 (1964). https://doi.org/10.1063/1.1725324

E. F. Mische, S. W. S. Mckeever, Radiat. Prot. Dosim., 29(3), 159–175 (1989). https://doi.org/10.1093/oxfordjournals.rpd.a080548

M. Prokic, Nucl. Instrum. Methods, 175, 83–86 (1980). https://doi.org/10.1016/0029-554X(80)90262-1

P. D. Sahare, M. Singh, P. Kumar, J. Lumin., 160, 158–164 (2015). https://doi.org/10.1016/j.jlumin.2014.11.042

M. Santiago, C. Graseli, E. Caseli, M. Lester, A. Lavat, F.Spano, Phys. Stat. Sol. (a), 185(2), 285–289 (2001). https://doi.org/10.1002/1521-396X(200106) 185:2<285::AID-PSSA285>3.0.CO;2-9

L. F. Souza, P. L. Antonio, L. V. E. Caldas, D. N. Souza, Nucl. Instrum. Methods Phys. Res. A, 784, 9–13 (2015). https://doi.org/10.1016/j.nima.2014.12.030

A. K. Subanakov, Zh. G. Bazarova, A. I. Nepomnyschih, A. V. Perevalov and B. G. Bazarov, Inorg. Mater., 50(5), 485–488 (2014). https://doi.org/10.1134/S0020168514050185

J. H. Schulman, R. D. Kirk, E. J. West, In Proc. Int. Conf. on Luminescence Dosimetry, US AEC Symposium series CONF-650637 (pp. 113–117). Stanford University, USA (1967).

D. I. Shahare, S. J. Dhoble, S. V. Moharil, J. Mater. Sci. Lett., 12, 1873–1874 (1993). https://doi.org/10.1007/BF00540016

M. Takenaga, O. Yamamoto, T. Yamashita, Nucl. Instrum. Methods, 175, 77–78 (1980). https://doi.org/10.1016/0029-554X(80)90259-1

E. G. Yukihara, E. D. Milliken, B. A. Doull, J. Lumin., 154, 251–259 (2014). https://doi.org/10.1016/j.jlumin.2014.04.038


Issue


How to Cite
O Legorreta-Alba; E Cruz-Zaragoza; D Díaz; J Marcazzó. Synthesis of MgB4O7:Dy3+and Thermoluminescent Characteristics at Low Doses of Beta Radiation. J. Nucl. Phy. Mat. Sci. Rad. A. 20186, 71-76.

Saturday 16 September 2017

Study of L-Glutamic Acid in Solid State for its Possible Use as a Gamma Dosimeter at Different Temperatures (77, 195 and 295 K)

A L MELÉNDEZ-LÓPEZ1,2, J CRUZ-CASTAÑEDA1,2, A PAREDESARRIAGA1,3, A NEGRÓN-MENDOZA1*AND S RAMOS-BERNAL1

1Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, UNAM

2 Programa de Maestría y Doctorado en Ciencias Químicas, Universidad Nacional Autónoma de México, UNAM

3 Facultad de Ciencias, Universidad Nacional Autónoma de México, UNAM

 *Email: negrón@nucleares.unam.mx

Abstract The experimental response of the dosimeter as a function of the irradiation temperature plays an important role, and this effect has consequences in the practical applications of dosimetry. In this work, L-glutamic acid (2-aminopentanedioic acid) is proposed to be a good response, easy to handle, and a cheap gamma dosimeter. For this purpose, polycrystalline samples were irradiated with gamma rays at 77, 195, and 295 K and doses in the kiloGray range (43–230 kGy). The potential use of the glutamic acid system as a chemical dosimeter is based on the formation of stable free radicals when the amino acid is exposed to ionizing radiation. The observed species in these experiments were attributed to deamination and decarboxylation reactions that were studied using electron spin resonance (ESR). The results indicate that the analysis generates a linear response as the irradiation dose increases in a reliable range for industrial and research purposes at three different temperatures.

 DOI: https://doi.org/10.15415/jnp.2017.51017

LINK: http://dspace.chitkara.edu.in/jspui/bitstream/1/877/1/51017_JNP_MELENDEZ%20-%20NEGRON.pdf

Study of L-Glutamic Acid in Solid State for its Possible Use as a Gamma Dosimeter at Different Temperatures (77, 195 and 295 K)

A L MELÉNDEZ-LÓPEZ1,2, J CRUZ-CASTAÑEDA1,2, A PAREDESARRIAGA1,3, A NEGRÓN-MENDOZA1*AND S RAMOS-BERNAL1

1Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, UNAM

2 Programa de Maestría y Doctorado en Ciencias Químicas, Universidad Nacional Autónoma de México, UNAM

3 Facultad de Ciencias, Universidad Nacional Autónoma de México, UNAM

 *Email: negrón@nucleares.unam.mx

Abstract The experimental response of the dosimeter as a function of the irradiation temperature plays an important role, and this effect has consequences in the practical applications of dosimetry. In this work, L-glutamic acid (2-aminopentanedioic acid) is proposed to be a good response, easy to handle, and a cheap gamma dosimeter. For this purpose, polycrystalline samples were irradiated with gamma rays at 77, 195, and 295 K and doses in the kiloGray range (43–230 kGy). The potential use of the glutamic acid system as a chemical dosimeter is based on the formation of stable free radicals when the amino acid is exposed to ionizing radiation. The observed species in these experiments were attributed to deamination and decarboxylation reactions that were studied using electron spin resonance (ESR). The results indicate that the analysis generates a linear response as the irradiation dose increases in a reliable range for industrial and research purposes at three different temperatures.

DOI: https://doi.org/10.15415/jnp.2017.51017

LINK: http://dspace.chitkara.edu.in/jspui/bitstream/1/877/1/51017_JNP_MELENDEZ%20-%20NEGRON.pdf

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...