Showing posts with label X-ray Fluorescence. Show all posts
Showing posts with label X-ray Fluorescence. Show all posts

Monday, 7 September 2020

A Data Mining Perspective of XRF Elemental Analysis from Pueblo People’s Pottery

 

  • M. Castro-Colin
    Bruker AXS GmbH, Karlsruhe-76131, Germany
  • E. Ramirez-Homs
    Department of Physics, El Paso, TX-79912, USA
  • J. A. López
    Department of Physics, El Paso, TX-79912, USA
Keywords: X-ray fluorescence, Radiation, Spectrometry, Cluster Analysis, Data Mining, Archaeology, Provenance, Nondestructive testing analysis

Abstract

Hierarchichal clustering was used to identify elemental signatures in artifacts attributed to the Pueblo peoples. The artifacts in this study are pottery samples found at different sites in the state of New Mexico, USA. Three methods were applied: complete, average, and Ward. Their corresponding cophenetic correlation coefficients were used to contrast the three methods. Elemental characterization was only based on X-ray fluorescence excitation from a portable spectrometer with silver anode. The elemental correlations here disclosed by data mining techniques are expected to guide further archaelogical studies and assist experts in the assessment of provenance and historical ethnographic studies.

 

References

E. Ben-Yosef, et al., PNAS 114, 2160 (2009). https://doi.org/10.1073/pnas.1615797114

E. Boaretto, et al., PNAS 16, 9595 (2017). https://doi.org/10.1073/pnas.0900539106

G. Bronitsky., Adv. Archaeological Method and Theory 9, 209 (1986). https://doi.org/10.1016/B978-0-12-003109-2.50008-8

A. Chudin, K. Ushanova, and E. Lähderanta., Mediterranean Archaeology and Archaeometry 19, 25 (2019). https://doi.org/10.5281/zenodo.2585948

J. Diamond. Collapse: how societies choose to fail or succeed. Ch. 4. pp. 145. Penguin Group, New York, USA (2005).

B. P. Dutton. “American Indians of the Southwest”. Ch. 2, pp. 9-62. U. of New Mexico Press, Albuquerque, USA (1983).

M. Holgersson., Pattern recognition 10, 287 (1978). https://doi.org/10.1016/0031-3203(78)90038-9

A. Iordanidis, J. Garcia-Guinea and G. Karamitrou-Mentessidi., Mat. Characterization 60, 292 (2009). https://doi.org/10.1016/j.matchar.2008.08.001

Y. Konomata, et al., Antiquity 93, 1 (2019). https://doi.org/10.15184/aqy.2019.56

I. Kuleff and R. Djingova., Revue d’Archéométrie 20, 57 (1996).

I. Liritzis, N. Zacharias, I. Papageorgiou, A. Tsaroucha and E. Palamar., Studia Antiqua et Archaelogica 24, 31 (2018).

F. Murtagh and P. Contreras., Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2, 86 (2012). https://doi.org/10.1002/widm.53

P. S. Nayak and B. K. Singh, Bull. Mater. Sci. 30, 235 (2007). https://doi.org/10.1007/s12034-007-0042-5

R. Norstrom, Graduate Thesis and Dissertations, U. of South Florida, January 2014 http://scholarcommons.usf.edu/etd/5285.

C. Papachristodoulou, et al., Anal. Chimica Acta 573, 347 (2006). https://doi.org/10.1016/j.aca.2006.02.012

J. B. Phipps, Systematic Zoology 20, 306 (1971). https://doi.org/10.2307/2412343

P. M. Rice and M. E. Saffer, J. Arc. Sci. 9, 395 (1982). https://doi.org/10.1016/0305-4403(82)90045-0

F. J. Rohlf and D. L. Fisher, Systematic Zoology 17, 407 (1968). https://doi.org/10.1093/sysbio/17.4.407

R. R. Sokal and S. J. Rohlf, Taxon 11, 33 (1962). https://doi.org/10.2307/1217208

V. A. Solé, E. Papillon, M. Cotte, Ph. Walter and J. Susini, Spectrochim. Acta Part B 62, 63 (2007). https://doi.org/10.1016/j.sab.2006.12.002

A. Sturz, M. Itoh, and S. Smith, Proceedings of the Ocean Drilling Program, Scientific Results 158, 277 (1998). https://doi.org/10.2973/odp.proc.sr.158.221.1998

R. H. Tykot, Appl. Spectroscopy 70, 42 (2015). https://doi.org/10.1177/0003702815616745

U. Wagner, et al., Radiation in Art and Archaeometry, Eds. D. C. Creagh and D. A Bradley. Ch. 18, 417-443. Elsevier Science, Amsterdam, The Netherlands (2000).

S. Watanabe, et al., Spec. Acta Part A: Mol. and Biomol. Spectroscopy 71, 1261 (2008). https://doi.org/10.1016/j.saa.2008.03.034.

J. B. Weems (1903). Chemistry of Clays. Iowa Geological Survey Annual Report, 14, 319–346.

A. L. Wilson, J. Archaeological Sci. 5, 219 (1978). https://doi.org/10.1016/0305-4403(78)90041-9

 

 

How to Cite

M. Castro-Colin; E. Ramirez-Homs; J. A. López. A Data Mining Perspective of XRF Elemental Analysis from Pueblo People’s Pottery. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 129-138.

Monday, 6 August 2018

Temperature Effects in the Composition of Metal Halide Perovskite thin Films

 

  • M. Castro-ColinBruker AXS, Karlsruhe, Germany
  • L. BanuelosDept. of Physics, U. of Texas at El Paso, El Paso, TX, USA
  • C. Diaz-MorenoDept. of Physics, U. of Texas at El Paso, El Paso, TX, USA
  • D. HodgesElectrical and Computer Eng. Dept., U. of Texas at El Paso, El Paso, TX, USA
  • E. Ramirez-HomsDept. of Physics, U. of Texas at El Paso, El Paso, TX, USA
  • D. KorolkovBruker AXS, Karlsruhe, Germany
  • N. SharminDept. of Physics, U. of Texas at El Paso, El Paso, TX, USA
  • J. A. LopezDept. of Physics, U. of Texas at El Paso, El Paso, TX, USA
Keywords: Perovskites, Photovoltaic, Energy Conversion, X-ray Reflectivity, X-ray Fluorescence

Abstract

Metal halide perovskites have shown to be a structure with great promise as an efficient photovoltaic, but at the same time it is affected by instability problems that degrade their performance. Degradation mechanisms vary with temperature, moisture, oxidation, and energy conversion during light exposure. We study performance loss due to temperature by probing diffusion of elemental composition across the thickness of films produced by spin coating and for temperatures ranging from 20 to 200°C. X-ray reflectivity was used to identify the electron density, composition, and quality of the films, aided with X-ray fluorescence and X-ray photoelectron spectroscopy studies to obtain information about degradation of the organic phase of the films.


References

J. A. Chang, S. H. Im, Y. H. Lee, H-J. Kim, C-S. Lim, J. H. Heo, and S. I. Seok, Nano Lett., 12 (4), 1863–1867 (2012). https://doi.org/10.1021/nl204224v

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science, 338, 643–647 (2012). https://doi.org/10.1126/science.1228604

D. Zhao, C. Wang, Z. Song, Y. Yu, C. Chen, X. Zhao, K. Zhu, and Y. Yan, ACS Energy Lett., 3 (2), 305–306 (2018). https://doi.org/10.1021/acsenergylett.7b01287

NREL efficiency chart of photovoltaic cells: www.nrel. gov/pv/assets/images/efficiency-chart.png.

A. K. Misra, J. Catalan, D. Camacho, M. Martinez, and D. Hodges, Mater Res. Express, 4, 085906 (2017). https://doi.org/10.1088/2053-1591/aa8184

A. K. Misra, D. Hodges, and R. D. K. Misra, Mater Res. Express, 4, 096201 (2017). https://doi.org/10.1088/2053-1591/aa86d7

G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, Energy Environ. Sci., 7, 982–988 (2014). https://doi.org/10.1039/c3ee43822h

R. L. Hoye, R. E. Brandt, A. Osherov, V. Stevanovic, S. D. Stranks, M. W. Wilson, et al., Chem. Eur. J., 22 (8), 2605-2610 (2016). https://doi.org/10.1002/chem.201505055

N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, and H. J. Snaith, Energy Environ. Sci., 7, 3061–3068 (2014). https://doi.org/10.1039/C4EE01076K

V. A. Solé, E. Papillon, M. Cotte, Ph. Walter, J. Susini, Acta Part B 62, 63-68 (2007). https://doi.org/10.1016/j.sab.2006.12.002


Issue


How to Cite
M. Castro-Colin; L. Banuelos; C. Diaz-Moreno; D. Hodges; E. Ramirez-Homs; D. Korolkov; N. Sharmin; J. A. Lopez. Temperature Effects in the Composition of Metal Halide Perovskite Thin Films. J. Nucl. Phy. Mat. Sci. Rad. A. 20186, 39-49.

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...