Evolution of Shapes and Search for Shape Coexistence in Sd-Shell Nuclei by M.Kumawat, G. Saxena, M. Kaushik, S. K. Jain and M. Aggarwal

Evolution of Shapes and Search for Shape Coexistence in Sd-Shell Nuclei

M.Kumawat, G. Saxena, M. Kaushik, S. K. Jain and M. Aggarwal
  • Download PDF
  • DOI Number
    https://doi.org/10.15415/jnp.2018.52025
KEYWORDS
Relativistic mean-field theory; Macroscopic-microscopic approach (Mac-Mic); Shape-coexistence; Shape transition; sd-shell nuclei.
PUBLISHED DATEFebruary 2018
PUBLISHERThe Author(s) 2018. This article is published with open access at www.chitkara.edu.in/publications
ABSTRACT
A detailed and systematic study has been performed using state dependent Relativistic Mean-Field plus BCS (RMF+BCS) approach to investigate shape evolution for even-even isotopes of Ne, Mg, Si and S. We perform quadrupole constraint calculation using NL3* parameter and look into the variation of binding energy with respect to deformation and find the shape and deformation corresponding to energy minima. We find various isotopes showing shape coexistence and shape transition while moving from proton drip-line to neutron drip-line. These results are compared with Macroscopic-microscopic approach (Mac-Mic) with Nilson Strutinsky (NS) prescription and some other works and are found consistent for these sd-shell nuclei.
Page(s)283–290
URLhttp://dspace.chitkara.edu.in/jspui/bitstream/123456789/708/1/003JNP_Kumwat.pdf
ISSNPrint : 2321-8649, Online : 2321-9289
DOIhttps://doi.org/10.15415/jnp.2018.52025
REFERENCES
  • Cceres, L., et al.. Shells and shapes in the 44S nucleus. Acta Physica Polonica B 42, 3 (2011).
  • Nobuo Hinohara et al.. Shape fluctuations in the ground and excited 0+ states of 30,32,34Mg. Phys. Rev. C 84, 061302(R) (2011).
  • Wimmer, K., et al.. Discovery of the shape coexisting 0+ State in 32Mg by a two neutron transfer reaction. Phys. Rev. Lett. 105, 252501 (2010).
  • Li, A., Zhou,X. R., and Sagawa ,H., Tensor force and shape evolution of Si isotopes in the Skyrme-Hartree-Fock model. Progr. Theor. Exp. Phys. 2013, 063D03 (2013).
  • Davies, A. D., et al.. Probing Shell Structure and Shape Changes in Neutron-Rich Sulfur Isotopes through Transient-Field g-Factor Measurements on Fast Radioactive Beams of 38S and40S. Phys. Rev. Lett. 96, 112503 (2006).
  • Saxena, G., Kumawat, M., Kaushik, M., Jain, S. K., and Mamta Aggarwal. Twoproton radioactivity with 2p halo in light mass nuclei A = 1834. Phys. Lett. B 775, 126 (2017).
  • Saxena, G., Kumawat, M., Kaushik, M., Singh, U. K., Jain,S. K., Somorendro Singh, S., and Mamta Aggarwal. Implications of occupancy of 2s1/2 state in sd-shell within RMF+BCS approach. Int. J. Mod. Phys. E 26, 1750072 (2017).
  • Lalazissis, G. A., Karatzikos, S., Fossion, R., Pena Arteaga, D., Afanasjev, A. V., and Ring, P.,The effective force NL3 revisited. Phys. Lett. B 671, 36 (2009).
  • Mamta Aggarwal. Proton radioactivity at non-collective prolate shape in high spin state of 94Ag. Phys. Lett. B 693, 489 (2010).
  • Mamta Aggarwal. Coexisting shapes with rapid transitions in odd-Z rare-earth proton emitters. Phys. Rev. C 89, 024325 (2014).
  • Lalazissis, G. A., Vretenar, D., and Ring,P., Relativistic Hartree-Bogoliubov description of sizes and shapes of A=20 isobars. Phys. Rev. C 63, 034305 (2001).
  • Singh, D., Saxena, G., Kaushik, M., Yadav, H. L., and Toki, H., Study of twoproton radioactivity within the relativstic mean-field plus bcs approach. Int. J. Mod. Phys. E 21, 1250076 (2012).
  • Sugahara, Y., and Toki, H., Relativistic Mean-Field Theory for Unstable Nuclei with Non-Linear σ and (Omega) terms. Nucl. Phys. A 579, 557 (1994).
  • Yadav, H. L., Kaushik, M., and Toki, H., Description of drip-line nuclei within the Relativistic Mean-Field plus BCS Aproach. Int. J. Mod. Phys. E 13, 647 (2004).
  • Geng, L. S., Toki, H., Sugimoto, S., and Meng, J., Relativistic mean field theory for deformed nuclei with pairing correlations. Prog. Theor. Phys. 110, 921 (2003).
  • Gambhir,Y. K., Ring, P., and Thimet, A., Relativistic mean field theory for finite nuclei. Annals Phys. 198, 132 (1990).
  • Flocard, H., Quentin, P., Kerman, A. K., and Vautherin, D., Nuclear deformation energy curves with the constrained Hartree-Fock method. Nucl. Phys. A 203, 433 (1973).
  • Geng,L. S., Toki, H., Ozawa, A., and Meng, J., Proton and neutron skins of light nuclei within the relativistic mean field theory Nucl. Phys. A 730, 80 (2004).
  • Ring,P.,Relativistic mean field theory in finite nuclei. Prog. Part. Nucl. Phys. 37, 193 (1996).
  • Saxena, G., Singh, D., Kaushik, M., and Singh,S. S., RMF+ BCS approach for drip-line isotopes of Si., Canadian Journal of Physics 92, 253 (2014).
  • Saxena, G., and Singh, D., Study of neutron magic drip-line nuclei within relativistic mean-field plus BCS Approach. Int. J. Mod. Phys. E 22, 1350025 (2013).
  • Dobaczewski, J., Flocard, H., and Treiner, J., Hartree-Fock-Bogolyubov description of nuclei near the neutron-drip line. Nucl. Phys. A 422, 103 (1984).

The Three-Body Structure of 2n and 2p Halo Nuclei I. Sreeja and M. Balasubramaniam


A three-cluster model developed for ternary fission studies has been applied for the first time to study the three-body structure of 2n and 2p halo nuclei. For the experimentally known 2n, 2p halo nuclei, all possible ternary fragmentation potential energy surface (PES) is calculated. The two-body breakup reported earlier, clearly indicated a strong minimum in the PES corresponding to 1n/1p and/or 2n/2p cluster plus core configuration. However, the present calculations of PES reveal that, the three- body breakup does not result always with 2n and/or 2p as a cluster. A 1n and/or 1p cluster along with the core is initially formed, and then the core loses one nucleon to make either a 2n plus core or 2p plus core structure. The results are substantiated with the calculations of preformation probability calculated within quantum mechanical fragmentation theory.



URLhttp://dspace.chitkara.edu.in/jspui/bitstream/123456789/707/1/002JNP_Sreeja.pdf
ISSNPrint : 2321-8649, Online : 2321-9289
DOIhttps://doi.org/10.15415/jnp.2018.52024
REFERENCES
  • I. Tanihata, H. Hamagaki, O. Hashimoto, S. Nagamiya et al., Phys. Lett. 160B, 380 (1985).
  • I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida et al., Phys. Rev. Lett. 55, 2676 (1985). https://doi.org/10.1103/PhysRevLett.55.2676
  • I. Tanihata, T. Kobayashi, O. Yamakawa, S. Shimoura et al., Phys. Lett. B 206, 592 (1988).
  • M. Brodeur, T. Brunner, C. Champagne, S. Ettenenauer et al., Phys. Rev. Lett. 108, 052504 (2012). https://doi.org/10.1103/PhysRevLett.108.052504
  • B. V. Danilin, I. J. Thompson, J. S. Vaagen and M. V. Zhukov, Nucl. Phys. A 632, 383 (1998). https://doi.org/10.1016/S0375-9474(98)00002-5
  • R. K. Gupta, M. Balasubramaniam, R. K. Puri and W. Scheid, J. Phys. G: Nucl. Part. Phys. 26, L23 (2000). https://doi.org/10.1088/0954-3899/26/2/102
  • R. K. Gupta, M. Balasubramaniam et al., J. Phys. G: Nucl. Part. Phys. 32, 565 (2006). https://doi.org/10.1088/0954-3899/32/4/012
  • G. Sawhney, M. K. Sharma and R. K. Gupta J. Phys. G: Nucl. Part. Phys 41, 055101 (2014). https://doi.org/10.1088/0954-3899/41/5/055101
  • R. K. Gupta, Sushil Kumar et al., J. Phys. G: Nucl. Part. Phys. 28, 699 (2002). https://doi.org/10.1088/0954-3899/28/4/309
  • W. Horiuchi and Y. Suzuki, Phys. Rev. C 74, 034311 (1961). https://doi.org/10.1103/PhysRevC.74.034311
  • ] T. Frederico, M. T. Yamashita and Lauro Tomio, Nucl. Phys. A 787, 561c-568c (2007). https://doi.org/10.1016/j.nuclphysa.2006.12.085
  • I. Mazhumdar, Pramana - J. Phys., 75, 81 (2010). https://doi.org/10.1007/s12043-010-0067-y
  • Shi-Sheng Zhang, M. S. Smith, Zhong-Shu Kang and Jie Zhao, Phys. Lett. B 730, 30 (2014).
  • L. A. Souza, F. F. Bellotti and T. Frederico, J. Phys. 630, 012043 (2015). [15] Y. Togano, T. Nakamura, Y. Kondo, J. A. Tostevin et al., Phys. Lett. B 761, 412 (2016). https://doi.org/10.1016/j.physletb.2016.08.062 [
  • E. Rydberg, C. Forssen and L. Platter, Few Body Syst. 58, 143 (2017). https://doi.org/10.1007/s00601-017-1307-1
  • W. Schwab et al., Z. Phys. A 350, 283 (1995). https://doi.org/10.1007/BF01291183
  • A. Ozawa et al., Phys. Lett. B 334, 18 (1994). https://doi.org/10.1016/0370-2693(94)90585-1
  • Z. Ren, B. Chen, Z. Ma and G. Xu, Phys. Rev. C 53, 572 (1996). https://doi.org/10.1103/PhysRevC.53.R572
  • R. Kanungo, M. Chiba, S. Adhikari, D. Fang et al., Phys. Lett. B 571, 21 (2003). https://doi.org/10.1016/j.physletb.2003.07.050
  • R. Kanungo, Nucl. Phys. A 738, 293 (2004). https://doi.org/10.1016/j.nuclphysa.2004.04.048
  • L. V. Grigorenko, Yu. L. Parfenova and M. V. Zhukov, Phys. Rev. C 71, 051604(R) (2005).
  • W. Geithner, T. Neff, G. Audi, K. Blaum et al., Phys. Rev. Lett. 101, 252502 (2008). https://doi.org/10.1103/PhysRevLett.101.252502
  • W.S. Hwash, Int. J. Mod. Phys. E 25, 1650105 (2016). https://doi.org/10.1142/S0218301316501056
  • R. K. Gupta, Proceedings of the Vth International Conference on Nuclear Reaction Mechanisms, Varenna, Italy (1988) p. 416.
  • S. S. Malik and R. K. Gupta, Phys. Rev. C 39 1992 (1989). https://doi.org/10.1103/PhysRevC.39.1992
  • R. K. Gupta, W. Scheid, and W. Greiner, J. Phys. G: Nucl. Phys. 17 1731(1991). https://doi.org/10.1088/0954-3899/17/11/018
  • S. Kumar and R. K. Gupta, Phys. Rev. C 55 218 (1997). https://doi.org/10.1103/PhysRevC.55.218
  • R. K. Gupta, in Heavy Elements and Related New Phenomena, edited by W. Greiner and R.K. Gupta (World Scientific, Singapore, 1999), Vol. II, p. 730. https://doi.org/10.1142/9789812816634_0020
  • K. Manimaran and M. Balasubramaniam, Phys. Rev. C 79, 024610 (2009). https://doi.org/10.1103/PhysRevC.79.024610
  • K. Manimaran and M. Balasubramaniam, Eur. Phys. J. A 45, 293 (2010). https://doi.org/10.1140/epja/i2010-11000-7
  • K. Manimaran and M. Balasubramaniam, J. Phys. G: Nucl. Part. Phys. 37, 045104 (2010). https://doi.org/10.1088/0954-3899/37/4/045104
  • K. Manimaran and M. Balasubramaniam, Phys. Rev. C 83, 034609 (2011). https://doi.org/10.1103/PhysRevC.83.034609
  • K. R. Vijayaraghavan, W. von Oertzen and M. Balasubramaniam, Eur. Phys. J. A 48, 27 (2012). https://doi.org/10.1140/epja/i2012-12027-4
  • K. R. Vijayaraghavan, M. Balasubramaniam and W. von Oertzen, Phys. Rev. C 90, 024601 (2014). https://doi.org/10.1103/PhysRevC.90.024601
  • M. Balasubramaniam, K. R. Vijayaraghavan and C. Karthickraj, Pramana - J. Phys., 85, 423 (2015).
  • M. Balasubramaniam, K. R. Vijayaraghavan and K. Manimaran, Phys. Rev. C 93, 014601 (2016). https://doi.org/10.1103/PhysRevC.93.014601
  • G. Audi, F. G. Kondev, M. Wang, B. Pfeiffer, X. Sun, J. Blachot and M. MacCormik, Chin. Phys. C 36(12), 1157 (2012) https://doi.org/10.1088/1674-1137/36/12/
  • P. Mller, J. R. Nix, W. D. Myers, W. J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995)
  • J. Blocki, J. Randrup, W. J. Swiatecki and C. F. Tsang, Ann. Phys. (NY) 105, 427 (1977). https://doi.org/10.1016/0003-4916(77)90249-4
  • H. Kröger and W. Scheid, J. Phys. G 6, L85 (1980). https://doi.org/10.1088/0305-4616/6/4/006

Distinguishing Features of Radioactive Compound Nucleus Decays within the Dynamical Cluster decay Model

Hemdeep, Sahila Chopra, Pooja Kaushal and Raj K. Gupta


Dynamical cluster-decay model; deformed non-coplanar fragments; non-compound nucleus effects; radioactive nuclei.


In this paper, we are interested to study the distinguishing features of the decaying radioactive compound nuclei 246Bk* and 220Th*, using the Dynamical Cluster-decay Model (DCM) with deformation β and non-coplanar degree-of-freedom Φ. 246Bk* and 220Th* have so-far been studied within the DCM, using quadrupole deformations (β2i), “optimum” orientations (θopt) of the two nuclei lying in the same plane (Φ=0o), which shows that there is a non-compound nucleus (nCN) content in the observed data. The first turning point Ra (equivalently, the neck-length ∆R in Ra=R1+R2+∆R), which fixes both the preformation and penetration paths, is used to best fit the measured evaporation residue (ER) and fusion-fission (ff) cross sections, σER, σff, respectively, in 220Th* and 246Bk*, formed via different entrance channels. In this work, we subsequently add higher multipole deformations, the octupole and hexadecupole (β3i, β4i), `compact’ orientations θci and Φ≠00, and look for their effects on the nCN contribution predicted by the DCM calculations referenced above.

URLhttp://dspace.chitkara.edu.in/jspui/bitstream/123456789/706/1/001JNP_Hampdeep.pdf
ISSNPrint : 2321-8649, Online : 2321-9289
DOIhttps://doi.org/10.15415/jnp.2018.52023


  • B. B. Singh, M. K. Sharma, and R. K. Gupta, Phys. Rev. C 77, 054613 (2008). https://doi.org/10.1103/PhysRevC.77.054613
  • R. K. Gupta and M. Bansal, Int. Rev. of Phys. (I.RE.PHY) 5, 74 (2011).
  • M. Bansal, Ph.D. Thesis, Panjab University, Chandigarh, (2012).
  • Hemdeep, S. Chopra, A. Kaur, and R. K. Gupta, Phys. Rev. C 95, 014609 (2017). https://doi.org/10.1103/PhysRevC.95.014609
  • R. K. Gupta, M. Manhas and W. Greiner, Phys. Rev. C 73, 054307 (2006). https://doi.org/10.1103/PhysRevC.73.054307
  • C. C. Sahm, et al., Nucl. Phys. A 441, 316 (1985). https://doi.org/10.1016/0375-9474(85)90036-3
  • D. Vermeulen, et al., Z. Phys. A 318, 157 (1984). https://doi.org/10.1007/BF01413464
  • G. N. Knyazheva, et al., Phys. Rev. C 75, 064602 (2007). https://doi.org/10.1103/PhysRevC.75.064602
  • D. A. Mayorov, et al., Phys. Rev. C 90, 024602 (2014). https://doi.org/10.1103/PhysRevC.90.024602
  • P. Kaushal, S. Chopra, Hemdeep, and R. K. Gupta, Proceedings DAE-BRNS Symposium on Nucl. Phys. 62, 480 (2017).
  • R. K. Gupta, in Clusters in Nuclei, Lecture Notes in Physics 818, edited by C. Beck, Vol. I, (Springer Verlag, Berlin, 2010), pp. 223–265.
  • R. K. Gupta, R. Kumar, N. K. Dhiman, M. Balasubramaniam, W. Scheid, and C. Beck, Phys. Rev. C 68, 014610 (2003). https://doi.org/10.1103/PhysRevC.68.014610
  • R. K. Gupta, M. Balasubramaniam, R. Kumar, N. Singh, M. Manhas, and W. Greiner, J. Phys. G: Nucl. Part. Phys. 31, 631 (2005). https://doi.org/10.1088/0954-3899/31/7/009
  • H. Kroeger and W. Scheid, J. Phys. G 6, L85 (1980). https://doi.org/10.1088/0305-4616/6/4/006
  • S. S. Malik and R. K. Gupta, Phys. Rev. C 39, 1992 (1989). https://doi.org/10.1103/PhysRevC.39.1992
  • N. J. Davidson, S. S. Hsiao, J. Markram, H. G. Miller, and Y. Tzeng, Nucl. Phys. A 570, 61c (1994). https://doi.org/10.1016/0375-9474(94)90269-0
  • M. Balasubramaniam, R. Kumar, R. K. Gupta, C. Beck, and W. Scheid, J. Phys. G: Nucl. Part. Phys. 29, 2703 (2003). https://doi.org/10.1088/0954-3899/29/12/003
  • G. Audi, A. H. Wapstra, and C. Thiboult, Nucl. Phys. A 729, 337 (2003). https://doi.org/10.1016/j.nuclphysa.2003.11.003
  • P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995)
  • W. Myers and W. J. Swiatecki, Nucl. Phys. 81, 1 (1966). https://doi.org/10.1016/0029-5582(66)90639-0
  • S. Jensen and J. Damgaard, Nucl. Phys. A, 203, 578 (1973). https://doi.org/10.1016/0375-9474(73)90365-5
  • R. K. Gupta, N. Singh, and M. Manhas, Phys. Rev. C 70, 034608 (2004). https://doi.org/10.1103/PhysRevC.70.034608
  • S. Chopra, M. Bansal, M. K. Sharma, and R. K. Gupta, Phys. Rev. C 88, 014615 (2013). https://doi.org/10.1103/PhysRevC.88.014615
  • M. Manhas and R. K. Gupta, Phys. Rev. C 72, 024606 (2005). https://doi.org/10.1103/PhysRevC.72.024606

Determination of Cu, Zn, Mn & Fe Metals in Soil Employing the EDXRF & FAAS Techniques and Comparative Study of Results

VIRENDRA SINGH1,* , DIWAKAR PADALIA2 , KAMAL DEVLAL3

1 Department of Physics, G. B. Pant University of Ag. & Tech., Pantnagar, U.S.Nagar 263145, India

2 Department of Physics, K.R Mangalam University, Gurgaon 122103, India

3 Department of Physics, School of Science, Uttarakhand Open University, Haldwani 263139, India

Abstract Two analytical spectroscopic techniques viz. EDXRF and FAAS were employed in analyzing the four heavy metals i.e. Cu, Zn, Mn and Fe in 24 soil samples. The heavy metals in understudy soil were found to have very low to high concentration range and so both techniques were compared for a broader range of concentrations. Two methods, open vessel digestion and microwave oven digestion, were used to prepare the liquid samples for FAAS analysis. The results of both of the EDXRF and FAAS techniques were found comparable when high concentration element Fe was determined. However, for the low concentration values, the results were dissimilar. Some statistical methods like regression and Levene’s test are used to compare the results of both the techniques.

DOI: https://doi.org/10.15415/jnp.2017.42032

LINK: http://dspace.chitkara.edu.in/jspui/bitstream/1/829/4/42033_JNP_varindra.pdf

Binary Fission fragmentation of 184 466,476X

S. SUBRAMANIAN1,2, C. KARTHIKRAJ3 , AND S. SELVARAJ1

1 Department of Physics, The M. D. T. Hindu College Tirunelveli - 627010, Tamilnadu, India.

2 Department of Physics, V. O. Chidambaram College Tuticorin - 628008, Tamilnadu, India.

3 Department of Physics, Nanjing University Nanjing - 210093, People’s Republic of China.

Email: ssmanian73@gmail.com

Abstract Based on the statistical theory of fission, we discuss here the binary fission fragmentation of these giant nuclear systems formed in low energy U + U collisions. Here, the mass and charge distribution of fragments from the binary fission of these systems are studied at T = 1 and 2 MeV. From our results at T = 1 MeV, fragments in the near-asymmetric and near-symmetric regions pronounce higher yield values. However, at T = 2 MeV, our results are grossly different. Furthermore, the binary fragmentation with the largest yield consists of at least one closed shell nucleus. Different possible binary fission modes are presented to look for U + Ugiant nuclear systems.

DOI: https://doi.org/10.15415/jnp.2017.42032

LINK: http://dspace.chitkara.edu.in/jspui/bitstream/1/828/4/42032_JNP_Subramanian.pdf

Understanding the Basics of Final Unification With Three Gravitational Constants Associated With Nuclear, Electromagnetic and Gravitational Interactions

U. V. S. SESHAVATHARAM1 AND S. LAKSHMINARAYANA2

1 Honorary Faculty, I-SERVE, Survey no-42, Hitex road, Hitech city, Hyderabad-84, Telangana, India.
2 Department of Nuclear Physics, Andhra University, Visakhapatnam-03, AP, India

Email: seshavatharam.uvs@gmail.com

Abstract With three fundamental gravitational constants assumed to be associated with strong interaction, electromagnetic interaction and gravity, we review the basics of final unification.

DOI:https://doi.org/10.15415/jnp.2017.42031

LINK: http://dspace.chitkara.edu.in/jspui/bitstream/1/827/4/42031_JNP_Seshavatharam.pdf

Possible Alpha and 14C Cluster Emission From Hyper Radium Nuclei in The Mass Region A = 202-235

K. P. SANTHOSH AND C. NITHYA

School of Pure and Applied Physics, Kannur University, Swami Anandatheertha Campus, Payyanur 670327, INDIA

Email: drkpsanthosh@gmail.com

Abstract The possibilities for the emission of 4 He and 14C clusters from hyper 202 235 - Λ Ra are studied using our Coulomb and proximity potential model (CPPM) by including the lambda-nucleus potential. The predicted half lives show that hyper Λ 202 231 - Ra nuclei are unstable against 4 He emission and 14C emission from Λ 217 229 - Ra are favorable for measurement. Our study also show that hyper Λ 202 235 - Ra are stable against hyper Λ 4 He and Λ 14C emission. The role of neutron shell closure (N = 126) in Λ 213Rn daughter and role of proton and neutron shell closure (Z = 82, N = 126) in Λ 209Pb daughter are also revealed. As hyper nuclei decays to normal nuclei by mesonic/non-mesonic decay and since most of the predicted half lives for 4 He and 14C emission from normal Ra nuclei are favorable for measurement, we presume that alpha and 14C cluster emission from hyper Ra nuclei can be detected in laboratory in a cascade (two-step) process..

DOI: https://doi.org/10.15415/jnp.2017.42030

LINK: http://dspace.chitkara.edu.in/jspui/bitstream/1/826/4/42030_JNP_Santosh01.pdf

Heavy-ion Fusion Cross Sections of 32 S on 90,96 Zr Targets Using Coulomb and Proximity Potential

K. P. Santhosh and V. Bobby Jose



Abstract The fusion excitation functions for the fusion of 32S on 90,96Zr have been calculated larger value, while using one-dimensional barrier penetration model, taking scattering potential as the sum of Coulomb and proximity potential and the calculated values are compared with experimental data with considerations to shape degrees of freedom. At and above the barrier the computed cross sections match well with the experimental data, whereas below the barrier, calculations with nuclear surface tension coefficient improved by Reisdorf in the proximity potential with considerations to shape degrees of freedom give an approximate fit. Reduced reaction cross sections for the systems 32S on 90,96Zr have also been described.




The Dependence of Surface Diffuseness Parameter on N/Z Ratio of The Fusion of Neutron-Rich Colliding NucleiDepartment of Applied Sciences, Chitkara University, Solan – 164103 (H.P.), India.

SUMAN MITTAL AND ISHWAR DUTT*

Department of Applied Sciences, Chitkara University, Solan – 164103 (H.P.), India.

*Email: ishwar.dutt1@chitkarauniversity.edu.in

Abstract Surface diffuseness parameter used in Woods-Saxon form of potential have been extracted from a large number of experimentally studied neutron-rich fusion cross sections at near barrier energies. The results of our systematic study reveals that the extracted diffuseness parameter depend linearly on the N/Z ratio of the fusing nuclei. Further, we demonstrated that the extracted values of surface diffuseness parameter lies within the range a = 0.40 to 0.73 fm as compared to commonly accepted value form elastic scattering data i.e. 0.63 fm.

DOI: https://doi.org/10.15415/jnp.2017.42028

LINK: http://dspace.chitkara.edu.in/jspui/bitstream/1/824/4/42028_JNP_Ishwar.pdf

Influence of Mo6+ on Dielectric properties of Copper Ferrites

B.V. RAO, P.V.L. NARAYANA AND A.D.P. RAO

Department of Nuclear Physics, Andhra University, Visakhapatnam, India.

Email: research.angalakuduru@yahoo.com

Abstract: Two series of copper ferrites are prepared using the chemical compositional formula Cu 1.0-3y Fe 2.0-2xMo x + yO4.0. They are calcinated at 750 C and sintered at 950C. When x =y = 0.0, the ε′ of the basic copper ferrite is probably due to electronic exchange interactions of copper and iron ions as Cu2+ ↔ Cu1+ and Fe3+ ↔ Fe2+. The observed value of dielectric constant (є′) decreases as a function of substituent concentration (x) up to x = 0.20 and for further values of ‘x’ it found to increase. In the case of ‘C’ (x = 0) series ferrites є′ decreases with substituent concentration (y) up to y = 0.04, later it found to increase. The dispersion of ac resistivity with frequency is observed indicating their strong dependence on frequency as in the case of dielectric behaviour. These results are explained with different possible mechanisms.
.

DOI: https://doi.org/10.15415/jnp.2017.42027

LINK: http://dspace.chitkara.edu.in/jspui/bitstream/1/823/4/42027_JNP_Rao.pdf

Evolution of Shapes and Search for Shape Coexistence in Sd-Shell Nuclei by M.Kumawat, G. Saxena, M. Kaushik, S. K. Jain and M. Aggarwal

Evolution of Shapes and Search for Shape Coexistence in Sd-Shell Nuclei M.Kumawat, G. Saxena, M. Kaushik, S. K. Jain and  M. Aggarwal ...