Showing posts with label strong coupling constant. Show all posts
Showing posts with label strong coupling constant. Show all posts

Monday, 7 September 2020

On the role of nuclear quantum gravity in understanding nuclear stability range of Z = 2 to 118

 

  • UVS Seshavatharam
    Honorary faculty, I-SERVE, Survey no-42, Hitech city, Hyderabad-84,Telangana, India
  • S Lakshminarayana
    Department of Nuclear Physics, Andhra University, Visakhapatnam-03, Andhra Pradesh, India
Keywords: Four gravitational constants, Compound reduced Planck’s constant, Nuclear elementary charge, Strong coupling constant, Nuclear binding energy, Nuclear stability limits, Super heavy element

Abstract

To understand the mystery of final unification, in our earlier publications, we proposed two bold concepts: 1) There exist three atomic gravitational constants associated with electroweak, strong and electromagnetic interactions. 2) There exists a strong elementary charge in such a way that its squared ratio with normal elementary charge is close to reciprocal of the strong coupling constant. In this paper we propose that, ℏc can be considered as a compound physical constant associated with proton mass, electron mass and the three atomic gravitational constants. With these ideas, an attempt is made to understand nuclear stability and binding energy. In this new approach, with reference to our earlier introduced coefficients k = 0.00642 and f = 0.00189, nuclear binding energy can be fitted with four simple terms having one unique energy coefficient. The two coefficients can be addressed with powers of the strong coupling constant. Classifying nucleons as ‘free nucleons’ and ‘active nucleons’, nuclear binding energy and stability can be understood. Starting from , number of isotopes seems to increase from 2 to 16 at and then decreases to 1 at For Z >= 84, lower stability seems to be, Alower=(2.5 to 2.531)Z.

 

References

K. Tennakone, Phys. Rev. D 10, 1722 (1974). https://doi.org/10.1103/physrevd.10.1722

C. Sivaram and K. Sinha, Physical Review D 16, 1975 (1977). https://doi.org/10.1103/physrevd.16.1975

De Sabbata V and M. Gasperini, Gen. Relat. Gravit. 10, 731 (1979). https://doi.org/10.1007/bf00756600

A. Salam, C. Sivaram, Mod. Phys. Lett. A 8, 321 (1993). https://doi.org/10.1142/s0217732393000325

R. Onofrio, Modern Physics Letters A 28, 1350022 (2013). https://doi.org/10.1142/s0217732313500223

U. V. S. Seshavatharam and S. Lakshminarayana, Hadronic Journal 34, 379 (2011).

U. V. S. Seshavatharam, S. Lakshminarayana, Journal of Nuclear and Particle Physics 2, 132 (2012). https://doi.org/10.5923/j.jnpp.20120206.01

U. V. S. Seshavatharam and S. Lakshminarayana, Asian Journal of Research and Reviews in Physics 2, 1 (2019).

U. V. S. Seshavatharam, et al., Materials Today: Proceedings 3, 3976 (2016). https://doi.org/10.1016/j.matpr.2016.11.059

U. V. S. Seshavatharam and S. Lakshminarayana, International Journal of Mathematics and Physics 7, 117 (2016). https://doi.org/10.26577/2218-7987-2016-7-1-117-130

U. V. S. Seshavatharam and S. Lakshminarayana, Proceedings of the DAE-BRNS Symp. on Nucl. Phys. 61, 332 (2016)

U. V. S. Seshavatharam and S. Lakshminarayana, Journal of Nuclear Physics, Material Sciences, Radiation and Applications 4, 355 (2017). https://doi.org/10.15415/jnp.2017.42031

U. V. S. Seshavatharam and S. Lakshminarayana, Journal of Nuclear Sciences 4, 31 (2017).

U. V. S. Seshavatharam and S. Lakshminarayana, Proceedings of the DAE Symp. on Nucl. Phys. 63, 72 (2018).

U. V. S. Seshavatharam and S. Lakshminarayana, Prespacetime Journal 9, 58 (2018).

U. V. S. Seshavatharam and S. Lakshminarayana, Mapana Journal of Sciences 18, 21 (2019)

U. V. S. Seshavatharam and S. Lakshminarayana, J. Nucl. Phys. Mat. Sci. Rad. A. 6, 142 (2019). https://doi.org/10.15415/jnp.2019.62024

U. V. S. Seshavatharam and S. Lakshminarayana, International Journal of Innovative Studies in Sciences Engineering Technology 5, 18 (2019).

U. V. S. Seshavatharam and S. Lakshminarayana, To correlate big G experiments and other nuclear experiments via three atomic gravitational constants. Dec.20-21, ICAPPM-2019, Hyderabad, India. (To be appeared in IOP Journal of Physics, conference series).

U. V. S. Seshavatharam and S. Lakshminarayana, Implications and Applications of Fermi Scale Quantum Gravity. (Submitted).

S. Cht. Mavrodiev, M. A. Deliyergiyev, Int. J. Mod. Phys. E 27, 1850015 (2018). https://doi.org/10.1142/S0218301318500155.

X. W. Xiaa, et al., Atomic Data and Nuclear Data Tables 121-122, 1 (2018). https://doi.org/10.1016/j.adt.2017.09.001

N. Ghahramany, et al., Iranian Journal of Science & Technology A 3, 201 (2011).

N. Ghahramany, et al., Journal of Theoretical and Applied Physics 6, 3 (2012). https://doi.org/10.1186/2251-7235-6-3

W. Zhang, et al., Nuclear Physics A 753, 106 (2005). https://doi.org/10.1016/j.nuclphysa.2005.02.086

A. Bohr and B. R. Mottelson, Nuclear Structure Vol. 1 (W. A. Benjamin Inc., New York, Amesterdam, 1969).

M. Tanabashi, et al., Phys. Rev. D 98, 030001 (2018).

Helge Kragh, The Search for Super heavy Elements: Historical and Philosophical Perspectives. arXiv:1708.04064 [physics.hist-ph] (2017)

Hagino K. Superheavy Elements: Beyond the 7th Period in the Periodic Table. To be published in AAPPS Bulletin. arXiv:1812.05805 [nucl-th] (2018).

https://www.sciencemag.org/news/2019/01/storiedrussian-lab-trying-push-periodic-table-past-its-limitsand-uncover-exotic-new

https://www.sciencenews.org/article/physics-periodictable-future-superheavy-elements

 

 

How to Cite
UVS Seshavatharam; S Lakshminarayana. On the Role of Nuclear Quantum Gravity in Understanding Nuclear Stability Range of Z = 2 to 118. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 43-51.

 

 

On the Role of Large Nuclear Gravity in Understanding Strong Coupling Constant, Nuclear Stability Range, Binding Energy of Isotopes and Magic proton numbers – A Critical Review

 

  • U.V.S. Seshavatharam
    Honorary faculty, I-SERVE, Survey no-42, Hitech city, Hyderabad-84,Telangana, India
  • S. Lakshminarayana
    Dept. of Nuclear Physics, Andhra University, Visakhapatnam-03, AP, India.
Keywords: Strong nuclear gravity, nuclear elementary charge, strong coupling constant, nuclear stability range, binding energy of isotopes, magic proton numbers

Abstract

With reference to our earlier published views on large nuclear gravitational constant Gs, nuclear elementary charge es and strong coupling constant αs ≅ e/es 2, in this paper, we present simple relations for nuclear stability range, binding energy of isotopes and magic proton numbers. Even though ‘speculative’ in nature, proposed concepts are simple to understand, easy to implement, result oriented, effective and unified. Our proposed model seems to span across the Planck scale and nuclear scale and can be called as SPAN model (STRANGE* physics of atomic nucleus).

 

References

K.Tennakone, Phys. Rev. D 10, 1722 (1974).

J. J. Perng, Nuovo Cimento. Lettere, Serie 2, Vol. 23, N. 15, 552 (1978).

A. Salam and C. Sivaram, Modern Physics Letters A, 8 (4): 321 (1993). https://doi.org/10.1142/S0217732393000325.

A. Salam and J. Strathdee, Physical Review D 18, 4596 (1978). https://doi.org/10.1103/PhysRevD.18.4596.

C. Sivaram and K.P. Sinha, Physical Review D. 16 (6): 1975 (1977). https://doi.org/10.1103/PhysRevD.16.1975

C. Sivaram and K.P. Sinha, Phys. Rep., Vol. 51, 113 (1979).

C. Sivaram et al., Preprint, arXiv:1402.5071 (2013)

E. Recami and V. Tonin-Zanchin, Found. Phys. Lett., Vol. 7(1), 85 (1994).

E. Recami et al., APH N.S. Heavy Ion Physics 10 345 (1999).

Raut Usha and K.P. Shina, Proceedings of the Indian Academy of Sciences Part A: Physical Sciences, 49 (2), 352 (1983).

V. de Sabbata and C. Sivaram, IL Nuovo Cimento, Vol. 101A, N. 2, 273 (1989).

Roberto Onofrio, EPL 104, 20002 (2013)

O.F. Akinto and Farida Tahir, arXiv:1606.06963v3 (2017)

T.R. Mongan, CoGeNT and DAMA/LIBRA. arXiv:0706.3050v3 (2011)

J. Dufour, J. of condensed matter nuclear science, Vol. 1, 47 (2007).

R.L. Oldershaw, Astrophysics and Space Science, Vol. 311, N. 4, 431 (2007). https://doi.org/10.1007/s10509-007-9557-x.

R.L. Oldershaw, Journal of Cosmology, Vol. 6, 1361 (2010).

R.A. Stone, Progress in Physics, Vol. 2, 19 (2010).

Sergey G. Fedosin, Hadronic Journal, Vol. 35, No. 4, 349 (2012).

S.I. Fisenko, M.M.Beilinson and B.G.Umanov, Physics Letters A, Volume 148, Issues 8-9, 405 (1990).

Seshavatharam U.V.S & Lakshminarayana S, Progress in Physics, vol. 3, 31 (2010). https://doi.org/10.20944/preprints201810.0053.v2.

U.V.S. Seshavatharam & S. Lakshminarayana, Proceedings of the DAE-BRNS Symp. On Nucl. Phys. 60, 118 (2015).

U.V.S. Seshavatharam and S. Lakshminarayana, Journal of Nuclear Sciences, Vol. 4, No.2, 31 (2017). https://doi.org/10.1501/nuclear_0000000024.

U.V.S. Seshavatharam and S.Lakshminarayana, To be appeared in the proceedings of ICNPAP conference, October, 2018, Centre for Applied Physics, Central University of Jharkhand, Ranchi, India.

U.V.S. Seshavatharam and S.Lakshminarayana, To be appeared in the proceedings of ICNPAP conference, October, 2018, Centre for Applied Physics, Central University of Jharkhand, Ranchi, India.

U.V.S. Seshavatharam and S.Lakshminarayana, Proceedings of the DAE-BRNS Symp. On Nucl. Phys. 62, 106 (2017).

U.V.S. Seshavatharam and S.Lakshminarayana, Materials Today: 3/10PB, Proceedings 3 pp. 3976-3981 (2016).

U.V.S. Seshavatharam and S.Lakshminarayana, Journal of Nuclear Physics, Material Sciences, Radiation and Applications Vol-4, No-1, 1-19, (2017).

U.V.S. Seshavatharam and S.Lakshminarayana, Prespacetime Journal, Vol. 9, Issue 1, 58 (2018).

U.V.S. Seshavatharam and S.Lakshminarayana, Open Science Journal of Modern Physics. 2(5): 89 (2015).

U.V.S. Seshavatharam and S. Lakshminarayana, International Journal of Mathematics and Physics 7, No1, 117 (2016).

U.V.S. Seshavatharam and S. Lakshminarayana, Universal Journal of Physics and Application 9(5): 210 (2015).

U.V.S. Seshavatharam and S. Lakshminarayana, Universal Journal of Physics and Application 10(6): 198 (2016).

U.V.S. Seshavatharam and S. Lakshminarayana, International Journal of Physical Research, 5 (2) 104 (2017).

U.V.S. Seshavatharam and S. Lakshminarayana, Journal of Nuclear Sciences, Vol. 4, No.1, 7 (2017). https://doi.org/10.1501/nuclear_0000000024.

U.V.S. Seshavatharam & S.Lakshminarayana, Prespacetime Journal, Vol. 8, Iss. 10, 1255 (2018).

U.V.S. Seshavatharam and S.Lakshminarayana, Prespacetime Journal, Vol. 8, Iss.7, 881 (2017).

P. R. Chowdhury et al., Mod. Phys. Lett. A20, 1605 (2005).

Oganessian Yu and V.K. Utyonkov, Physical Society (Great Britain). 78, 036301 (2015)

N.Ghahramany et al., Physics of Particles and Nuclei Letters, Vol. 8, No. 2, 97 (2011)

N. Ghahramany et al., Iranian Journal of Science & Technology A3: 201 (2011).

W. D. Myers et al., Table of Nuclear Masses according to the 1994 Thomas-Fermi Model. (from nsdssd.lbl.gov).

U. V. S. Seshavatharam and S. Lakshminarayana, Prespacetime Journal, Vol. 9, Issue 7, 642 (2018).

N. Ghahramany et al., Iranian Physical Journal, 1-2, 35 (2007).

D.T. Tran et al., Nature Communications, Vol 9, Article number: 1594 (2018).

J. Fridmann et al., Nature. 435:922-924 (2005).

N. Ghahramany et al., Universal Journal of Physics and Application 1(1): 018 (213).

Ludwig Hendrik & Ruffini Remo. Journal of the Korean Physical Society. 65. (2014). https://doi.org/10.3938/jkps.65.892.

I.F. Mirabel, New Astronomy Reviews Volume 78, 1 (2017).

https://en.wikipedia.org/wiki/Neutron_star

U.V.S. Seshavatharam and S.Lakshminarayana, Proceedings of the DAE Symp. on Nucl. Phys. 59, 804 (2014).

U.V.S. Seshavatharam and S. Lakshminarayana, Frontiers of Astronomy, Astrophysics and Cosmology, Vol. 1, No. 1, 16 (2015).

A. Mitra, Foundations of Physics Letters.13: 543 (2000)

S.W. Hawking, Commun. Math. Phys. 43: 199 (1975)

C. Patrignani et al., (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update

Jonathan L. Feng et al., International Journal of Modern Physics D, Vol. 13, No. 10, 2355 (2004). https://doi.org/10.1142/S0218271804006474.

Brandenburg J. E, International Journal of Astrophysics and Space Science. Special Issue: Quantum Vacuum, Fundamental Arena of the Universe: Models, Applications and Perspectives. Vol. 2, No. 6-1, 24 (2014).

https://doi.org/10.11648/j.ijass.s.2014020601.14.

S. Bethke and G.P. Salam, Olive K.A. et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014) and 2015 update.

K. Becker, M. Becker and J.H. Schwarz, Cambridge University Press (2006)

https://aeon.co/essays/has-the-quest-for-topdown-unification-of-physics-stalled

 

Issue

 
 
How to Cite
U.V.S. Seshavatharam; S. Lakshminarayana. On the Role of Large Nuclear Gravity in Understanding Strong Coupling Constant, Nuclear Stability Range, Binding Energy of Isotopes and Magic Proton Numbers – A Critical Review. J. Nucl. Phy. Mat. Sci. Rad. A. 2019, 6, 155-169.
 

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...