Showing posts with label Halo nuclei. Show all posts
Showing posts with label Halo nuclei. Show all posts

Monday, 7 September 2020

A Systematic Study on the Existence of 7-9B, 16-19Ne, 8-11C, 23-30P and 26-32S Nuclei via Cluster Decay in the Super Heavy Region

 

  • K. P. Anjali
    Department of Physics, Government Brennen College, Thalassery, Kerala, India.
  • K. Prathapan
    Department of Physics, Government Brennen College, Thalassery, Kerala, India
  • R. K. Biju
    Department of Physics, Government Brennen College, Thalassery, Kerala, India.; Department of Physics, Pazhassi Raja N S S College, Mattanur, India
  • K. P. Santhosh
    School of Pure and Applied Physics, Kannur University, Payyanur Campus, Payyanur, India.
Keywords: Halo Nuclei, Cluster Radioactivity, Deformation

Abstract

Based on the Coulomb and Proximity Potential Model, we have studied the decay probabilities of various exotic nuclei from even-even nuclei in the super heavy region. The half-lives and barrier penetrability for the decay of exotic nuclei such as 7-9B, 16-19 Ne, 8-11 C, 23-30 P and 26-32 S from the isotopes 274-332116,274-334 118 and 288-334120 are determined by considering them as spherical as well as deformed nuclei. The effect of ground state quadrupole (β2), Octupole (β3) and hexadecapole (β4) deformation of parent, daughter and cluster nuclei on half- lives and barrier penetrability were studied. Calculations have done for the spherical nuclei and deformed nuclei in order to present the effects of the deformations on half-lives. It is found that height and shape of the barrier reduces by the inclusion of deformation and hence half-life for the emission of different clusters decreases and barrier penetrability increases. Changes in the half-lives with and without the inclusion of deformation effects are compared in the graph of half -life and barrier penetrability against neutron number of parents. It is evident from the computed half lives that many of the exotic nuclei emissions are probable. Moreover shell structure effects on the half-lives of decay are evident from these plots. Peak in the plot of halflife and dip in the plot of barrier penetrability against neutron number of parent show shell closure at or near to N=184, N=200 and N=212.

 

References

I. Tanihata, et al., Phys. Rev. Lett. 55, 2676 (1985). https://doi.org/10.1103/PhysRevLett.55.2676.

R. K. Gupta, et al., J.Phys. G: Nucl. Part. Phys. 28, 699 (2002). https://doi.org/10.1088/0954-3899/28/4/309.

B. Jonson, Phys. Rep. 389, 1 (2004). https://doi.org/10.1016/j.physrep.2003.07.004.

A. S. Jensen, K. Riisager, D. V. Fedorov, Rev. Mod. Phys. 76, 215(2004). https://doi.org/10.1103/RevModPhys.76.215.

K. Riisager, Phys. ScriptaT, 152, 1(2013). https://doi.org/10.1088/0031-8949/2013/T152/014001.

Emil Ryberg, Christian Forssén, H.-W. Hammer, Lucas Platter, Phys. Rev. C 89,014325(2014). https://doi.org/10.1103/PhysRevC.89.014325.

J. Meng, P.Ring, Phys.Rev.Lett, 80,460(1998). https://doi.org/10.1103/PhysRevLett.80.460.

Hansen PG and Jonsen B, Europhys.Lett.B, 4, 409 (1987). https://doi.org/10.1209/0295-5075/4/4/005.

J. Al-Khalili, Lect. Notes Phys, 651, 77 (2004). https://doi.org/10.1007/978-3-540-44490-9_3.

W. Schwab, et al. Phys. A 350, 283 (1995). https://doi.org/10.1007/BF01291183.

V. Guimarães, et al., Phys. Rev. Lett, 84, 1862 (2000). https://doi.org/10.1103/PhysRevLett.84.1862.

J. M. Oliveira, et al., Phys. Rev. Lett., 84, 4056 (2000). https://doi.org/10.1103/PhysRevLett.84.4056.

A. Ozawa, et al., Phys. Lett. B 334, 18 (1994). https://doi.org/10.1016/0370-2693(94)90585-1.

X. Z. Cai, et al., Phys. Rev. C 65, 1(2002). https://doi.org/10.1103/PhysRevC.65.024610.

B.A. Brown, P.G. Hansen, Phys. Lett. B 381, 391 (1996). https://doi.org/10.1016/0370-2693(96)00634-X.

Z. Ren, B. Chen, Z. Ma, G. Xu, Phys. Rev. C 53, R572 (1996). https://doi.org/10.1103/PhysRevC.53.R572.

Z. Ren, W. Mittig, B. Chen, Z. Ma, G. Auger, Z. Phys. A 353, 363 (1996). https://doi.org/10.1007/BF01285147.

I Tanihata, et al., Phys. Rev. Lett, 55, 2676 (1985). https://doi.org/10.1103/PhysRevLett.55.2676.

I Tanihata, et al., Phys. Lett. B 160, 380 (1985). https://doi.org/10.1016/0370-2693(85)90005-X.

P. G. Hansen, B. Jonson, Europhys. News, 4, 409 (1987). https://doi.org/10.1209/0295-5075/4/4/005.

T. Bjerge, K. J. Borgstrom, Nature, 138, 400 (1936). https://doi.org/10.1038/138400b0.

L V Grigorenko, et al., Physics-uspekhi, 59, 321 (2016). https://doi.org/10.3367/UFNe.0186.201604a.0337.

I. Tanihata, J.Phys. G: Nucl. Part. Phys. 22, 157 (1996). https://doi.org/10.1088/0954-3899/22/2/004.

T . Kobayashi, et al., Phys. Rev. Lett, 60, 2599 (1988). https://doi.org/10.1103/PhysRevLett.60.2599.

J. Casal, M. Gómez-Ramos, A.M. Moro, Phys. Lett, B 767, 307 ( 2017). https://doi.org/10.1016/j.physletb.2017.02.017.

E. Arnold, J. Bonn, R. Gegenwart, W. Neu, R. Neugart, E.-W. Otten, Phys. Lett. B 197,31 1 ( 1987). https://doi.org/10.1016/0370-2693(87)90390-X.

P. G Hansen, A. S. Jensen, Annu. Rev. Nucl. Part. Sci, 45, 591 (1995). https://doi.org/10.1146/annurev.ns.45.120195.003111.

I. Tanihata, et al., Phys. Rev. Lett, 100, 192502 (2008). https://doi.org/10.1103/PhysRevLett.100.192502.

N. Kobayashi, et al., Phys.Rev, C 86, 054604 (2012). https://doi.org/10.1103/PhysRevC.86.054604.

Y. Togano, et al., Phys. Lett, B 761, 412 (2016). https://doi.org/10.1016/j.physletb.2016.08.062.

N. Kobayashi, et al., Phys. Rev. Lett, 112, 242501 (2014). https://doi.org/10.1103/PhysRevLett.112.242501.

K. E. Rehm, et al., Phys. Rev. Lett, 81, 3341 (1998). https://doi.org/10.1103/PhysRevLett.81.3341.

A D Pietro, et al., Phys. Rev, C 85, 054607 (2012). https://doi.org/10.1103/PhysRevC.85.054607.

M Mazzocco, et al., Eur. Phys. J., A 28, 295 (2006). https://doi.org/10.1140/epja/i2006-10058-0.

V. Morcelle, et al., Phys. Lett, B 732, 228 (2014). https://doi.org/10.1016/j.physletb.2014.03.043.

O. R. Kakuee, et al., Nucl. Phys, A 728, 339 (2003). https://doi.org/10.1016/j.nuclphysa.2003.08.030.

M. V. Zhukov and I. J. Thompson, Phys. Rev. C 52, 3505 (1995). https://doi.org/10.1103/PhysRevC.52.3505.

Z. Ren, B. Chen, Z. Ma, and G. Xu, Phys. Rev.,C 53, R572 (1996). https://doi.org/10.1103/PhysRevC.53.R572.

R. Lewis and A. C. Hayes, Phys. Rev, C 59, 1211 (1999). https://doi.org/10.1103/PhysRevC.59.1211.

H. Y. Zhang, et al., Nucl. Phys. A 707, 303 (2002). https://doi.org/10.1016/S0375-9474(02)01007-2.

T. Sumikama, et al., Phys. Rev, C 74, 024327 (2006). https://doi.org/10.1103/PhysRevC.74.024327.

E. Ryberg, C. Forssén, H. W. Hammer, and L.Platter, Phys. Rev. C 89, 014325 (2014). https://doi.org/10.1103/PhysRevC.89.014325.

G. Sawhney, R.K. Gupta and M.K. Sharma, Acta. Phys. Polon, B 47, 959 (2016). https://doi.org/10.5506/APhysPolB.47.959.

M.K. Gaidarov, et al., Nucl. Theory, 36, 116 (2017).

G. Saxena, M. Kumawat, M. Kaushik, S. K. Jain, and M. Aggarwal, Phys. Lett. B 775, 126 (2017). https://doi.org/10.1016/j.physletb.2017.10.055.

Awad A. Ibraheem, Arwa S. Al-Hajjaji and M. El-Azab Farid, Revista Mexicana de Fisica 65, 168 (2019). https://doi.org/10.31349/RevMexFis.65.168.

K. P. Santhosh, Indusukumaran, Pramana J. Phys, 92, 6 (2019). https://doi.org/10.1007/s12043-018-1672-4.

E. F. Aguilera, et al., Phys. Rev, C 93, 034613 (2016). https://doi.org/10.1103/PhysRevC.93.034613.

J. Lubian, et al., Phys. Rev, C 79, 064605 (2009). https://doi.org/10.1103/PhysRevC.79.064605.

A. Pakou, et al., Phys. Rev, C 87, 014619 (2013). https://doi.org/10.1103/PhysRevC.87.014619.

J. A. Tostevin, F. M. Nunes, and I. J. Thompson, Phys. Rev, C 63, 024617 (2001). https://doi.org/10.1103/PhysRevC.63.024617.

V. Ninov, et al., Phys. Rev. Lett, 83, 1104(1999). https://doi.org/10.1103/PhysRevLett.83.1104.

Yu. Oganessian, J. Phys. G: Nucl. Part. Phys, 34, R165 (2007). https://doi.org/10.1088/0954-3899/34/4/R01.

Yu. Ts. Oganessian, et al., Phys. Rev, C 76,011601(R) (2007). https://doi.org/10.1103/PhysRevC.76.011601.

L. Stavsetra, et al., Phys. Rev. Lett,103, 132502 (2009). https://doi.org/10.1103/PhysRevLett.103.132502.

Yu. Ts. Oganessian, et al., Phys. Rev, C 69, 021601 (R) (2004). https://doi.org/10.1103/PhysRevC.69.021601.

Yu. Ts.Oganessian, et al., Phys. Rev, C 72, 034611 (2005). https://doi.org/10.1103/PhysRevC.72.034611.

Yu. Ts. Oganessian, Nucl. Phys, A 685, 17c (2001). https://doi.org/10.1016/S0375-9474(01)00525-5.

Yu. Ts. Oganessian, et al., Phys. Rev, C 74, 044602 (2006). https://doi.org/10.1103/PhysRevC.74.044602.

Yu. Ts. Oganessian,et al., Nucl. Phys, A 734, 109 (2004). https://doi.org/10.1016/j.nuclphysa.2004.01.020.

N. Wang,E.-G.Zhao,W. Scheid, S.-G.Zhou, Phys. Rev, C 85, 041601(R) (2012). https://doi.org/10.1103/PhysRevC.85.041601.

A. K. Nasirov, et al., Phys. Rev, C 79,024606 (2009). https://doi.org/10.1103/PhysRevC.79.024606.

K. P. Santhosh,R.K Biju,Pramana, J. Phys, 72, 689 (2009). https://doi.org/10.1007/s12043-009-0062-3.

K. P. Santhosh, Antony Joseph, Pramana, J. Phys, 58, 611 (2002). https://doi.org/10.1007/s12043-002-0019-2.

K. P. Santhosh, R.K Biju, Antony Joseph, J. Phys. G: Nucl. Part. Phys, 35,1(2008). https://doi.org/10.1088/0954-3899/35/8/085102.

K. P. Santhosh, Antony Joseph, Pramana, J. Phys, 62, 957 (2004). https://doi.org/10.1007/BF02706143.

K. P. Santhosh, Sabina Sahadevan, Nucl. Phys, A 847, 42 (2010). https://doi.org/10.1016/j.nuclphysa.2010.07.001.

Y J Shi and W J Swiatecki, Nucl. Phys, A 464, 205 (1987). https://doi.org/10.1016/0375-9474(87)90335-6.

K.P. Santhosh and Antony Joseph, Pramana, J. Phys, 59, 679 (2002). https://doi.org/10.1007/s12043-002-0078-4.

A. Soylu, Y. Sert, O. Bayrak and I. Boztosum, Eur. Phys. J, A 48, 128 (2012). https://doi.org/10.1140/epja/i2012-12128-0.

A. Soylu, O. Bayrak and S. Evlice, J. Phys.: Conf. Ser, 590, 012045 (2015). https://doi.org/10.1088/1742-6596/590/1/012045.

A. Coban, O. Bayrak, A. Soylu, and I. Boztosun, Phys. Rev, C 85, 044324 (2012). https://doi.org/10.1103/PhysRevC.85.044324.

J. Blocki, J Randrup, W J Swiatecki, C F Tsang, Ann. Phys. (N.Y.) 105, 427 (1977). https://doi.org/10.1016/0003-4916(77)90249-4.

J. Blocki, W. J. Swiatecki, Ann. Phys. (N.Y.) 132, 53 (1981). https://doi.org/10.1016/0003-4916(81)90268-2.

D N Poenaru, M Ivascu, A Sandulescu, W Greiner, Phys. Rev, C 32, 572 (1985). https://doi.org/10.1103/PhysRevC.32.572.

C Y Wong, Phys. Rev. Lett, 31, 766 (1973). https://doi.org/10.1103/PhysRevLett.31.766.

N. Malhotra, R. K. Gupta, Phys. Rev, C. 31, 1179 (1985). https://doi.org/10.1103/PhysRevC.31.1179.

R. K. Gupta, M Balasubramaniam, R Kumar, N Singh, M Manhas, W Greiner, J. Phys. G:Nucl. Part. Phys, 31, 631 (2005). https://doi.org/10.1088/0954-3899/31/7/009.

G. Audi, A.H. Wapstra, C. Thibaul, Nucl. Phys, A 729, 337 (2003). https://doi.org/10.1016/j.nuclphysa.2003.11.003.

H. Koura, Prog, Theor. Phys, 113, 305 (2005). https://doi.org/10.1143/PTP.113.305.

P.Moller, A. J.Sierk, T. Ichikawa, H.Sagawa, At. Data Nucl. Data Tables ,109,1(2016).https://doi.org/10.1016/j.adt.2015.10.002.

A. Sobiczewski, K.Pomorski, Prog.Part.Nucl. Phys, 58, 292(2007). https://doi.org/10.1016/j.ppnp.2006.05.001.

U. Mosel,W. Griener, Z. Physik, 222,261 (1969). https://doi.org/10.1007/BF01392125.

K.P. Santhosh, I. Sukumaran, Braz, J Phys, 46, 754 (2016). https://doi.org/10.1007/s13538-016-0461-0.

Q. Mo, M.Liu, N.Wang, Phys, Rev, C 90, 024320 (2014). https://doi.org/10.1103/PhysRevC.90.024320.

S.Cht.Mavrodiev,M.A.Deliyergiyev, arXiv:1602. 06777 (2016).

K. P. Santhosh, R. K Biju, J. Phys. G: Nucl. Part. Phys, 36, 015107 (2008). https://doi.org/10.1088/0954-3899/36/1/015107.

P. B. Price, et al., Phys. Rev, C 46, 1939 (1992). https://doi.org/10.1103/PhysRevC.46.1939.

R. Bonetti, et al., Phys. Rev, C 51,2530 (1995). https://doi.org/10.1103/PhysRevC.51.2530

Issue
 
How to Cite
K. P. Anjali; K. Prathapan; R. K. Biju; K. P. Santhosh. A Systematic Study on the Existence of 7-9B, 16-19Ne, 8-11C, 23-30P and 26-32S Nuclei via Cluster Decay in the Super Heavy Region. J. Nucl. Phy. Mat. Sci. Rad. A. 2019, 7, 1-12.
 

 

 

Wednesday, 29 August 2018

The Three-Body Structure of 2n and 2p Halo Nuclei I. Sreeja and M. Balasubramaniam


A three-cluster model developed for ternary fission studies has been applied for the first time to study the three-body structure of 2n and 2p halo nuclei. For the experimentally known 2n, 2p halo nuclei, all possible ternary fragmentation potential energy surface (PES) is calculated. The two-body breakup reported earlier, clearly indicated a strong minimum in the PES corresponding to 1n/1p and/or 2n/2p cluster plus core configuration. However, the present calculations of PES reveal that, the three- body breakup does not result always with 2n and/or 2p as a cluster. A 1n and/or 1p cluster along with the core is initially formed, and then the core loses one nucleon to make either a 2n plus core or 2p plus core structure. The results are substantiated with the calculations of preformation probability calculated within quantum mechanical fragmentation theory.



URLhttp://dspace.chitkara.edu.in/jspui/bitstream/123456789/707/1/002JNP_Sreeja.pdf
ISSNPrint : 2321-8649, Online : 2321-9289
DOIhttps://doi.org/10.15415/jnp.2018.52024
REFERENCES
  • I. Tanihata, H. Hamagaki, O. Hashimoto, S. Nagamiya et al., Phys. Lett. 160B, 380 (1985).
  • I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida et al., Phys. Rev. Lett. 55, 2676 (1985). https://doi.org/10.1103/PhysRevLett.55.2676
  • I. Tanihata, T. Kobayashi, O. Yamakawa, S. Shimoura et al., Phys. Lett. B 206, 592 (1988).
  • M. Brodeur, T. Brunner, C. Champagne, S. Ettenenauer et al., Phys. Rev. Lett. 108, 052504 (2012). https://doi.org/10.1103/PhysRevLett.108.052504
  • B. V. Danilin, I. J. Thompson, J. S. Vaagen and M. V. Zhukov, Nucl. Phys. A 632, 383 (1998). https://doi.org/10.1016/S0375-9474(98)00002-5
  • R. K. Gupta, M. Balasubramaniam, R. K. Puri and W. Scheid, J. Phys. G: Nucl. Part. Phys. 26, L23 (2000). https://doi.org/10.1088/0954-3899/26/2/102
  • R. K. Gupta, M. Balasubramaniam et al., J. Phys. G: Nucl. Part. Phys. 32, 565 (2006). https://doi.org/10.1088/0954-3899/32/4/012
  • G. Sawhney, M. K. Sharma and R. K. Gupta J. Phys. G: Nucl. Part. Phys 41, 055101 (2014). https://doi.org/10.1088/0954-3899/41/5/055101
  • R. K. Gupta, Sushil Kumar et al., J. Phys. G: Nucl. Part. Phys. 28, 699 (2002). https://doi.org/10.1088/0954-3899/28/4/309
  • W. Horiuchi and Y. Suzuki, Phys. Rev. C 74, 034311 (1961). https://doi.org/10.1103/PhysRevC.74.034311
  • ] T. Frederico, M. T. Yamashita and Lauro Tomio, Nucl. Phys. A 787, 561c-568c (2007). https://doi.org/10.1016/j.nuclphysa.2006.12.085
  • I. Mazhumdar, Pramana - J. Phys., 75, 81 (2010). https://doi.org/10.1007/s12043-010-0067-y
  • Shi-Sheng Zhang, M. S. Smith, Zhong-Shu Kang and Jie Zhao, Phys. Lett. B 730, 30 (2014).
  • L. A. Souza, F. F. Bellotti and T. Frederico, J. Phys. 630, 012043 (2015). [15] Y. Togano, T. Nakamura, Y. Kondo, J. A. Tostevin et al., Phys. Lett. B 761, 412 (2016). https://doi.org/10.1016/j.physletb.2016.08.062 [
  • E. Rydberg, C. Forssen and L. Platter, Few Body Syst. 58, 143 (2017). https://doi.org/10.1007/s00601-017-1307-1
  • W. Schwab et al., Z. Phys. A 350, 283 (1995). https://doi.org/10.1007/BF01291183
  • A. Ozawa et al., Phys. Lett. B 334, 18 (1994). https://doi.org/10.1016/0370-2693(94)90585-1
  • Z. Ren, B. Chen, Z. Ma and G. Xu, Phys. Rev. C 53, 572 (1996). https://doi.org/10.1103/PhysRevC.53.R572
  • R. Kanungo, M. Chiba, S. Adhikari, D. Fang et al., Phys. Lett. B 571, 21 (2003). https://doi.org/10.1016/j.physletb.2003.07.050
  • R. Kanungo, Nucl. Phys. A 738, 293 (2004). https://doi.org/10.1016/j.nuclphysa.2004.04.048
  • L. V. Grigorenko, Yu. L. Parfenova and M. V. Zhukov, Phys. Rev. C 71, 051604(R) (2005).
  • W. Geithner, T. Neff, G. Audi, K. Blaum et al., Phys. Rev. Lett. 101, 252502 (2008). https://doi.org/10.1103/PhysRevLett.101.252502
  • W.S. Hwash, Int. J. Mod. Phys. E 25, 1650105 (2016). https://doi.org/10.1142/S0218301316501056
  • R. K. Gupta, Proceedings of the Vth International Conference on Nuclear Reaction Mechanisms, Varenna, Italy (1988) p. 416.
  • S. S. Malik and R. K. Gupta, Phys. Rev. C 39 1992 (1989). https://doi.org/10.1103/PhysRevC.39.1992
  • R. K. Gupta, W. Scheid, and W. Greiner, J. Phys. G: Nucl. Phys. 17 1731(1991). https://doi.org/10.1088/0954-3899/17/11/018
  • S. Kumar and R. K. Gupta, Phys. Rev. C 55 218 (1997). https://doi.org/10.1103/PhysRevC.55.218
  • R. K. Gupta, in Heavy Elements and Related New Phenomena, edited by W. Greiner and R.K. Gupta (World Scientific, Singapore, 1999), Vol. II, p. 730. https://doi.org/10.1142/9789812816634_0020
  • K. Manimaran and M. Balasubramaniam, Phys. Rev. C 79, 024610 (2009). https://doi.org/10.1103/PhysRevC.79.024610
  • K. Manimaran and M. Balasubramaniam, Eur. Phys. J. A 45, 293 (2010). https://doi.org/10.1140/epja/i2010-11000-7
  • K. Manimaran and M. Balasubramaniam, J. Phys. G: Nucl. Part. Phys. 37, 045104 (2010). https://doi.org/10.1088/0954-3899/37/4/045104
  • K. Manimaran and M. Balasubramaniam, Phys. Rev. C 83, 034609 (2011). https://doi.org/10.1103/PhysRevC.83.034609
  • K. R. Vijayaraghavan, W. von Oertzen and M. Balasubramaniam, Eur. Phys. J. A 48, 27 (2012). https://doi.org/10.1140/epja/i2012-12027-4
  • K. R. Vijayaraghavan, M. Balasubramaniam and W. von Oertzen, Phys. Rev. C 90, 024601 (2014). https://doi.org/10.1103/PhysRevC.90.024601
  • M. Balasubramaniam, K. R. Vijayaraghavan and C. Karthickraj, Pramana - J. Phys., 85, 423 (2015).
  • M. Balasubramaniam, K. R. Vijayaraghavan and K. Manimaran, Phys. Rev. C 93, 014601 (2016). https://doi.org/10.1103/PhysRevC.93.014601
  • G. Audi, F. G. Kondev, M. Wang, B. Pfeiffer, X. Sun, J. Blachot and M. MacCormik, Chin. Phys. C 36(12), 1157 (2012) https://doi.org/10.1088/1674-1137/36/12/
  • P. Mller, J. R. Nix, W. D. Myers, W. J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995)
  • J. Blocki, J. Randrup, W. J. Swiatecki and C. F. Tsang, Ann. Phys. (NY) 105, 427 (1977). https://doi.org/10.1016/0003-4916(77)90249-4
  • H. Kröger and W. Scheid, J. Phys. G 6, L85 (1980). https://doi.org/10.1088/0305-4616/6/4/006

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...