Showing posts with label Uracil. Show all posts
Showing posts with label Uracil. Show all posts

Tuesday, 8 September 2020

Effect of Laser Radiation on Biomolecules

 

  • E. Prieto
    Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cuernavaca-62210, Mexico
  • L. X. Hallado
    Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cuernavaca-62210, Mexico
  • A. Guerrero
    Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cuernavaca-62210, Mexico
  • I. Álvarez
    Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cuernavaca-62210, Mexico
  • C. Cisneros
    Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cuernavaca-62210, Mexico
Keywords: Nitrogenous bases, Ionic fragments, Uracil, Adenine

Abstract

Time of flight laser photoionization has been used to study the response of some molecules of biological interest under laser radiation. One of the questions of great interest today is the effect of radiation on DNA and RNA molecules. Damage to these molecules can be caused directly by radiation or indirectly by secondary electrons created by radiation. As response of the radiation field fragmentation process can occur producing different ions with kinetic energies of a few electron volts. In this paper we present the results of the interaction of 355nm laser with the nitrogen bases adenine(A) and uracil(U) using time-of-flight spectrometry and the comparison of experimental results on the effects of laser radiation in (A) and (U) belonging to two different ring groups, purines and pyrimidines respectively, which are linked to form the AU pair of the RNA.

 

References

A. P. Schuch et al., Fre. Radic. Biol. Med. 107, 110 (2017). https://doi.org/10.1016/j.freeradbiomed.2017.01.029

T. M. Rüngerc and U. P. Kappes, Photodermatol. Photoimmuno. Photomed. 24, 2 (2008). https://doi.org/10.1111/j.1600-0781.2008.00319.x

C Champion, et al., J. of Phys.: Conf. Series. 373, 012004 (2012). https://doi.org/10.1088/1742-6596/373/1/012004

H. Levola et al., Int. J. of Mass Spectrom. 353, 7 (2013). https://doi.org/10.1016/j.ijms.2013.08.008

M. Schwell, et al., Chem. Phys. 353, 145 (2008). https://doi.org/10.1016/j.chemphys.2008.08.009

H.-W. Jochims et al., Chemi. Phy. 314, 263 ( 2005). https://doi.org/10.1016/j.chemphys.2005.03.008

G. F. Joyce, Nature 418, 214 (2002). https://doi.org/10.1038/418214a

O. Ghafur et al, J. Chem. Phys. 149, 034301 (2018). https://doi.org/10.1063/1.5034419

M. A. Rahman and E. Krishnakumara, J. Chem. Phys. 144, 161102 (2016). https://doi.org/10.1063/1.4948412

M. Ryszka et al, Int. J. Mass Spectrom. 396, 48 (2016). https://doi.org/10.1016/j.ijms.2015.12.006

A. Ostroverkh, A. Zavilopulo and Otto Shpenik, Eur. Phys. J. D. 73, 38 (2019). https://doi.org/10.1140/epjd/e2019-90532-3

T. M. Maddern, et al., Int. J. Mass Spectrom. 409, 73 (2016). https://doi.org/10.1016/j.ijms.2016.09.021

L. V. Keldysh, Sov. Soviet Phys. JETP 20, 1307 (1965).

B. Barc, et al., J. Chem. Phys. 139, 244311 (2013). https://doi.org/10.1063/1.4851476

M. J. DeWitt and R. J. Levis, J. Chem. Phys. 110, 11368 (1999). https://doi.org/10.1063/1.479077

L. X. Hallado, et al., J. Nuc. Phys, Mat. Sci. Rad. A. 6, 103 (2018). https://doi.org/10.15415/jnp.2018.61018

 

Issue
 

How to Cite
E. Prieto; L. X. Hallado; A. Guerrero; I. Álvarez; C. Cisneros. Effect of Laser Radiation on Biomolecules. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 123-128.
 

Saturday, 16 September 2017

Multiphoton Ionization of Uracil at 355 nm

E. PRIETO1 , A. GUERRERO1 , D. MARTÍNEZ1 , I. ÁLVAREZ1 , AND C. CISNEROS1*

1 Instituto de Ciencias Físicas-UNAM, Av. Universidad 1001, Chamilpa, 62210 Cuernavaca, Mor.

*Email: carmen@fis.unam.mx


Abstract We present the experimental results from ionization and dissociation by multiphoton absorption (MPI) of uracil and a mixture of uracil with Ar using a Reflectron time of flight spectrometer along with radiation from 355 nm at pulsed Nd:YAG laser . We focus on the light ions production. The MPI mass spectra show that the presence and intensity of the resulting ions depend on the density power of the laser. The resulting ions in the mass spectra are identified and found similar behavior in the case of H+ and C+ as when multiple charged ions are used. Different results were found in contrast with those, recently reported, when electrons or photons of other wavelength were used. The number of 355nm absorbed photons was calculated accordingly to Keldysh theory and similar results were fond using pure uracil or uracil-Ar mixture. Our results are compared with those obtained in other laboratories under different experimental conditions, some of them show only partial agreement and differences are discussed. 



DOI: https://doi.org/10.15415/jnp.2017.51004

LINK: http://dspace.chitkara.edu.in/jspui/bitstream/1/864/1/51004_JNP_Prieto%20-%20Cisneros.pdf

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...