Monday, 7 September 2020

Feasibility of Formation of Ge1-x-y Six Sny Layers With High Sn Concentration via Ion Implantation

 

  • Randall L. Holliday
    Ion Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas-76203, USA
  • Joshua M. Young
    Ion Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas-76203, USA
  • Satyabrata Singh
    Ion Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas-76203, USA
  • Floyd D. McDaniel
    Ion Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas-76203, USA
  • Bibhudutta Rout
    Ion Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas-76203, USA
Keywords: Photovoltaic cells, Ion implantation, Depth profile, Dynamic simulations

Abstract

By increasing the Sn concentration in Ge1-ySny and Ge1-x-ySixSny systems, these materials can be tuned from indirect to direct bandgap along with increasing electronic and photonic properties. Efforts have been made to synthesize Sn-Ge and Ge-Si-Sn structures and layers to produce lower energy direct bandgap materials. Due to low solid solubility of Sn in Ge and Si-Ge layers, high concentrations of Sn are not achieved by traditional synthesis processes such as chemical vapor deposition or molecular beam epitaxy. Implantation of Sn into Si-Ge systems, followed by rapid thermal annealing or pulse laser annealing, is shown to be an attractive technique for increasing Sn concentration, which can increase efficiencies in photovoltaic applications. In this paper, dynamic ion-solid simulation results are presented. Simulations were performed to determine optimal beam energy, implantation order, and fluence for a multi-step, ion-implantation based synthesis process.

 

References

P. Zaumseil, Y. Hou, M. A. Schubert, N. V. D. Driesch, D. Stange, D. Rainko, M. Virgilio, D. Buca, G. Capellini., APL Materials 6, 076108 (2018). https://doi.org/10.1063/1.5036728

C. Xu, L. Jiang, J. Kouvetakis, J. Menéndez, Appl. Phys. Lett. 103, 072111 (2013).https://doi.org/10.1063/1.4818673

John Kouvetakis, John Tolle, RadekRoucka, Vijay R. D’Costa, Yan-yan Fang, Andrew V. Chizmeshya, Jose Menendez., ECS Trans. 16, 807 (2008). https://doi.org/10.1149/1.2986840

D. Rainko, Z. Ikonic, N. Vukmirović, D. Stange, N. V. D. Driesch, D. Grützmacher & D. Buca, Scientific Reports 8, 15557 (2018). https://doi.org/10.1038/s41598-018-33820-1

T. T. Tran, D. Pastor, H. H. Gandhi, L. A. Smillie, A. J. Akey, M. J. Aziz and J. S. Williams, Journal of Applied Physics 119, 183102 (2016). https://doi.org/10.1063/1.4948960

B. Rout, M. S. Dhoubhadel, P. R. Poudel, V. C. Kummari, B. Pandey, N. T. Deoli, W. J. Lakshantha, S. J. Mulware, J. Baxley, J. E. Manuel, J. L. Pacheco, S. Szilasi, D. L. Weathers, T. Reinert, G. Glass, J. L. Duggan, F. D. McDaniel, IX International Symposium on Radiation Physics, Puebla, Mexico, April 14-17, 2013, AIP Conference Proceedings 1544, 11 (2013). https://doi.org/10.1063/1.4813454

A. Mutzke, R. Schneider, W. Eckstein, R. Dohmen, IPP Report 12/8 Garching, (2011).

W. J. Lakshantha, V. C. Kummari, T. Reinert, F. D. McDaniel, B. Rout, Nucl. Inst. And Meth. B 332, 33 (2014). https://doi.org/10.1016/j.nimb.2014.02.024

J. F. Ziegler, M. D. Ziegler and J. P. Biersack, Nuclear Instruments and Methods in Physics 268, 1818 (2010). https://doi.org/10.1016/j.nimb.2010.02.091

V. R. D’Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis and J. Menéndez, Phys. Rev. Lett. 102, 107403 (2009). https://doi.org/10.1103/PhysRevLett.102.107403

T. Yamaha, S. Shibayama, T. Asano, K. Kato, M. Sakashita, W. Takeuchi, O. Nakatsuka and S. Zaima, Appl. Phys. Lett. 108, 061909 (2016). https://doi.org/10.1063/1.4941991

 

 

How to Cite

Randall L. Holliday; Joshua M. Young; Satyabrata Singh; Floyd D. McDaniel; Bibhudutta Rout. Feasibility of Formation of Ge1-X-Y Six Sny Layers With High Sn Concentration via Ion Implantation. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 65-70.

On the role of nuclear quantum gravity in understanding nuclear stability range of Z = 2 to 118

 

  • UVS Seshavatharam
    Honorary faculty, I-SERVE, Survey no-42, Hitech city, Hyderabad-84,Telangana, India
  • S Lakshminarayana
    Department of Nuclear Physics, Andhra University, Visakhapatnam-03, Andhra Pradesh, India
Keywords: Four gravitational constants, Compound reduced Planck’s constant, Nuclear elementary charge, Strong coupling constant, Nuclear binding energy, Nuclear stability limits, Super heavy element

Abstract

To understand the mystery of final unification, in our earlier publications, we proposed two bold concepts: 1) There exist three atomic gravitational constants associated with electroweak, strong and electromagnetic interactions. 2) There exists a strong elementary charge in such a way that its squared ratio with normal elementary charge is close to reciprocal of the strong coupling constant. In this paper we propose that, ℏc can be considered as a compound physical constant associated with proton mass, electron mass and the three atomic gravitational constants. With these ideas, an attempt is made to understand nuclear stability and binding energy. In this new approach, with reference to our earlier introduced coefficients k = 0.00642 and f = 0.00189, nuclear binding energy can be fitted with four simple terms having one unique energy coefficient. The two coefficients can be addressed with powers of the strong coupling constant. Classifying nucleons as ‘free nucleons’ and ‘active nucleons’, nuclear binding energy and stability can be understood. Starting from , number of isotopes seems to increase from 2 to 16 at and then decreases to 1 at For Z >= 84, lower stability seems to be, Alower=(2.5 to 2.531)Z.

 

References

K. Tennakone, Phys. Rev. D 10, 1722 (1974). https://doi.org/10.1103/physrevd.10.1722

C. Sivaram and K. Sinha, Physical Review D 16, 1975 (1977). https://doi.org/10.1103/physrevd.16.1975

De Sabbata V and M. Gasperini, Gen. Relat. Gravit. 10, 731 (1979). https://doi.org/10.1007/bf00756600

A. Salam, C. Sivaram, Mod. Phys. Lett. A 8, 321 (1993). https://doi.org/10.1142/s0217732393000325

R. Onofrio, Modern Physics Letters A 28, 1350022 (2013). https://doi.org/10.1142/s0217732313500223

U. V. S. Seshavatharam and S. Lakshminarayana, Hadronic Journal 34, 379 (2011).

U. V. S. Seshavatharam, S. Lakshminarayana, Journal of Nuclear and Particle Physics 2, 132 (2012). https://doi.org/10.5923/j.jnpp.20120206.01

U. V. S. Seshavatharam and S. Lakshminarayana, Asian Journal of Research and Reviews in Physics 2, 1 (2019).

U. V. S. Seshavatharam, et al., Materials Today: Proceedings 3, 3976 (2016). https://doi.org/10.1016/j.matpr.2016.11.059

U. V. S. Seshavatharam and S. Lakshminarayana, International Journal of Mathematics and Physics 7, 117 (2016). https://doi.org/10.26577/2218-7987-2016-7-1-117-130

U. V. S. Seshavatharam and S. Lakshminarayana, Proceedings of the DAE-BRNS Symp. on Nucl. Phys. 61, 332 (2016)

U. V. S. Seshavatharam and S. Lakshminarayana, Journal of Nuclear Physics, Material Sciences, Radiation and Applications 4, 355 (2017). https://doi.org/10.15415/jnp.2017.42031

U. V. S. Seshavatharam and S. Lakshminarayana, Journal of Nuclear Sciences 4, 31 (2017).

U. V. S. Seshavatharam and S. Lakshminarayana, Proceedings of the DAE Symp. on Nucl. Phys. 63, 72 (2018).

U. V. S. Seshavatharam and S. Lakshminarayana, Prespacetime Journal 9, 58 (2018).

U. V. S. Seshavatharam and S. Lakshminarayana, Mapana Journal of Sciences 18, 21 (2019)

U. V. S. Seshavatharam and S. Lakshminarayana, J. Nucl. Phys. Mat. Sci. Rad. A. 6, 142 (2019). https://doi.org/10.15415/jnp.2019.62024

U. V. S. Seshavatharam and S. Lakshminarayana, International Journal of Innovative Studies in Sciences Engineering Technology 5, 18 (2019).

U. V. S. Seshavatharam and S. Lakshminarayana, To correlate big G experiments and other nuclear experiments via three atomic gravitational constants. Dec.20-21, ICAPPM-2019, Hyderabad, India. (To be appeared in IOP Journal of Physics, conference series).

U. V. S. Seshavatharam and S. Lakshminarayana, Implications and Applications of Fermi Scale Quantum Gravity. (Submitted).

S. Cht. Mavrodiev, M. A. Deliyergiyev, Int. J. Mod. Phys. E 27, 1850015 (2018). https://doi.org/10.1142/S0218301318500155.

X. W. Xiaa, et al., Atomic Data and Nuclear Data Tables 121-122, 1 (2018). https://doi.org/10.1016/j.adt.2017.09.001

N. Ghahramany, et al., Iranian Journal of Science & Technology A 3, 201 (2011).

N. Ghahramany, et al., Journal of Theoretical and Applied Physics 6, 3 (2012). https://doi.org/10.1186/2251-7235-6-3

W. Zhang, et al., Nuclear Physics A 753, 106 (2005). https://doi.org/10.1016/j.nuclphysa.2005.02.086

A. Bohr and B. R. Mottelson, Nuclear Structure Vol. 1 (W. A. Benjamin Inc., New York, Amesterdam, 1969).

M. Tanabashi, et al., Phys. Rev. D 98, 030001 (2018).

Helge Kragh, The Search for Super heavy Elements: Historical and Philosophical Perspectives. arXiv:1708.04064 [physics.hist-ph] (2017)

Hagino K. Superheavy Elements: Beyond the 7th Period in the Periodic Table. To be published in AAPPS Bulletin. arXiv:1812.05805 [nucl-th] (2018).

https://www.sciencemag.org/news/2019/01/storiedrussian-lab-trying-push-periodic-table-past-its-limitsand-uncover-exotic-new

https://www.sciencenews.org/article/physics-periodictable-future-superheavy-elements

 

 

How to Cite
UVS Seshavatharam; S Lakshminarayana. On the Role of Nuclear Quantum Gravity in Understanding Nuclear Stability Range of Z = 2 to 118. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 43-51.

 

 

Radon Progeny Recoil Effect in Retrospective Indoor Glass Dosimetry

 

  • C.D. Tibambre-Heredia
    Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
  • H. Olaya-Dávila
    Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
  • A.C. Sevilla
    Servicio Geológico Colombiano, Bogotá D.C, Colombia
  • R. Samasundaram
    Dipartimento di Fisicaed Astronomiadell' Università di Padova, ViaMarzolo 8, I-35131 Padova, Italy
  • J.A. Lopez
    Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, U.S.A.
  • S.A. Martinez-Ovalle
    Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.
  • L. Sajo-Bohus
    Dipartimento di FisicaedAstronomiadell' Università di Padova, ViaMarzolo 8, I-35131 Padova, Italy; UniversidadSimonBolivar, Nuclear Laboratory Caracas, 1080A Venezuela
Keywords: radon progeny, retrospective dosimetry, GEANT4, diffusion in glass

Abstract

Radon gas diffusion and progeny transport in air, are mechanisms to be considered in retrospective glass dosimetry. With the aim to contribute to the understanding of the Rn progeny recoil energy role in this dosimetry methodology, we carried out a simulation employing GEANT4 code. In that, we assumed the chemical compound of the glass that is used commonly in households.  Results are compared to experimentally measured 210Bi concentration to show that the recoil energy helps the progenies incrustation, mainly for the 218,214Po alpha emitters but do not influence bismuth-210 diffusion directly. A significant difference exists between our results and measured values; that is interpreted as due to atomic displacement by primary knock-on atoms. The SiO2 molecule binding energy breaks and the following ion recombination, induce a structural modification between the atom by e.g. cavities formation in such a way that reduces significantly the radon progeny diffusion speed.

 

References

American Cancer Society, (2019). https://www.cancer.org/cancer/cancer-causes/radiation-exposure/radon.html.

J. Ekman et al., Nucl. Inst. Met. Phy. R. B 249, 544 (2006). https://doi.org/10.1016/j.nimb.2006.03.049

J. A. Mahaffey et al., Health Phys 64, 381, (1993). https://doi.org/10.1097/00004032-199304000-00005

J. Pálfalvi, I. Fehér and M. Lörinc, Rad. Meas. 25, 585 (1995). https://doi.org/10.1016/1350-4487(95)00189-l

R. Falk, H. Mellander, L. Nyblom and I. Östergren, Env. Int. 22 S1, 857 (1996). https://doi.org/10.1016/S0160-4120(96)00193-6

A.M. Sanchez, J. de la Torre Pérez and A.B. Sánchez Ruano, Appl. Rad. & Iso 126, 13 (2017). https://doi.org/10.1016/j.apradiso.2017.02.037

B. Roos, Ph.D. thesis, University of Lund, 2002.

R. S. Lively and E. P. Ney, Heath Phys 52, 411 (1987). https://doi.org/10.1097/00004032-198704000-00001

C. Samuelsson, Nature 334, 338 (1988). https://doi.org/10.1038/334338a0

M. C. Alavanja, J. H. Lubin, and R.C. Brownson, Ame. J. Pub. Hea. 89, 1042 (1999). https://doi.org/10.2105/ajph.89.7.1042

F. Lagarde et al, Exposure Scien and Environ Epidem 12, 344 (2002).https://doi.org/10.1038/sj.jea.7500236

P. F. Düffer, Glass Technical Document TD-106, PPG Glass technology, (2003).

A. Howard (2013). CERN’s collaborations,. http://www.apc.univ-paris7.fr/~franco/g4doxy/html/LBE_8icc-source.html

A. Fick, Poggendorffs Annalen 94, 59 (1855).

W. J. Choi et al., Scientific Reports 4, 1 (2014). https://doi.org/10.1038/srep05289

G. H. Kinchin and R.S. Pease, Rep. Prog. Phys. 18, 1 (1955). https://doi.org/10.1088/0034-4885/18/1/301

 

How to Cite
C.D. Tibambre-Heredia; H. Olaya-Dávila; A.C. Sevilla; R. Samasundaram; J.A. Lopez; S.A. Martinez-Ovalle; L. Sajo-Bohus. Radon Progeny Recoil Effect in Retrospective Indoor Glass Dosimetry. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 35-41.

Time Resolution Measurements on SiPM for High Energy Physics Experiments

 

  • L.M. Montano
    Centro de Investigación y de Estudios Avanzados del IPN, cdmx
  • M. Fontaine
    Centro de Investigación y de Estudios Avanzados del IPN, cdmx
Keywords: Scintillation detector, Time resolution, Geiger-mode Avalanche Photodiode (G-APD), Silicon photomultiplier (SiPM)

Abstract

Scintillator detector have been used in a wide range of experiments in different areas: Nuclear and High Energy Physics, Medicine, and Radiation Security among others. It is common to use scintillator counters coupled to Photomultiplier Tubes (PMT) as a read out detectors. Nowadays, there has been a great interest in using the Silicon Photomultipliers (PMSi) as a replacement for PMT's due to their high photon detection efficiency (PDE) and their high single photon time resolution (SPTR). The fast the signal is detected, the whole detection system will be useful to search for new physics. PMSi is also known to have a good compactness, magnetic field resistance and low cost. In our lab we are measuring the time resolution of two different models of PMS in order to build a fast radiation detector system.

 

 

References

J-Series High PDE and Timing Resolution, TSV Package USER MANUAL, SensL.

J. W. Zhao et al., Nuclear Instruments and Methods in Physics Research Section A, Accelerators Spectrometers Detectors and Associated Equipment 823, 41 (2016). https://doi.org/10.1016/j.nima.2016.03.106.

P. W. Cattaneo et al., IEEE Trans. Nucl. Sci. 61, 2657 (2014). https://doi.org/10.1109/TNS.2014.2347576

P. Eckert et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 620, 217 (2010). https://doi.org/10.1016/j.nima.2010.03.169

G. F. Knoll, Radiation Detection and Measurement, Wiley, India (2010).

W. R. Leo, Techniques for Nuclear and Particle Physics Experiments: A How-To Approach, Springer-Verlag Berlin Heidelberg (1994). 

 

 

How to Cite
L.M. Montano; M. Fontaine. Time Resolution Measurements on SiPM for High Energy Physics Experiments. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 29-33.

 

The Performance of PIXE Technique through a Geochemical Analysis of High Grade Rocks

 

  • Venkata Surya Satyanarayana Avupati
    Department of Engineering Physics, Andhra University, Andhra Pradesh, India
  • M. Jagannadharao
    Department of Geology, Andhra University, Visakhapatnam-530003, Andhra Pradesh, India
  • K. Chandra Mouli
    Department of Engineering Physics, Andhra University, Visakhapatnam-530003, Andhra Pradesh, India
  • B. Seetaramireddy
    Department of Nuclear Physics, Andhra University, Visakhapatnam-530003, Andhra Pradesh, India
Keywords: High grade metamorphic rock, Charnockites, Complexity of matrix, Geochemical analysis, PIXE performance evaluation, AAS technique

Abstract

It has been an argument that some of the elements present in geological material by using PIXE analysis are purely determined or could not be determined at all, due to various reasons including the matrix. It is felt that a systematic investigation needs to be designed and implemented to understand the limitation of PIXE in certain elements. The high-grade rocks selected are analyzed both by PIXE as well as AAS and the results are authenticated by using a USGS reference material, Basalt, studies of literature. It is believed that the accuracy of problematic elements, especially from high grade rock can be improved and the conditions of PIXE can be standardized for various elements under different combinations. The reasons behind the poor performance of Proton Induced X- ray Emission in case of certain elements have been established.

 

References

S.A.E. Johansson and T.B. Johansson, Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms. 137, 473 (1976). https://doi.org/10.1016/0029554X(76)90470-5.

M.H. Kabir, Ph.D. Dissertation, Kochi University of Technology Japan (2007).

V. Vijayan, T. Rautray, P.K. Nayak, and D.K. Basa, X-ray spectrum. 34, 128 (2005). https://doi.org/10.1002/xrs.776.

Z. Dai et al., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 104, 489 (1995).https://doi.org/10.1016/0168-583X(95)00473-4

D.D. Cohen, R. Siegele, I. Orlic and Ed Stelcer, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 189, 81 (2002). https://doi.org/10.1016/S0168-583X(01)01011-4.

S.O. Olabanji et al., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 109-110, 262 (1996). https://doi.org/10.1016/0168-583X(95)00919-1 .

M.F. Araujo, L.C. Alves and J.M.P. Cabral, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 75, 450 (1993). https://doi.org/10.1016/0168-583X(93)95694-Z.

G. Calzolai et al., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 266, 2401 (2008). https://doi.org/10.1016/j.nimb.2008.03.056.

A. Bello, International Journal of Science and Technology. 2, 492 (2012). https://pdfs.semanticscholar.org/6f04/672ac6866b648ab2d78dc636b-329219cf8bc.pdf.

A. Ene, I.V. Popescu, T. Badica and C. Besliu, Romanian Reports in Physics. 51, 595 (2005).

J.D. Robertson, H. Neff and B. Higgins, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 189, 378 (2002). https://doi.org/10.1016/S0168-583X(01)01093-X.

K.G. Malmqvist et al., Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms, 22, 386 (1987).https://doi.org/10.1016/0168-583X(87)90364-8.

J.D. Macarthur and Xin-Pei Ma, International Journal of PIXE 1, 311 (1991). https://doi.org/10.1142/S0129083591000226.

H. Kucha, W. Przybylowicz, J. Kajfosz and S. Szymczyk, Geological Quarterly 38, 687 (1994).

B. Abdullahi, M. T. Tsepav, M. D. Oladipupo and B. Alfa, Modern Applied Science 6, 96 (2012). https://doi.org/10.5539/mas.V6n7p96.

J.R. Tesmer and M. Nastasi (eds), Modern Ion Beam Material Analysis, Material Research Society. Pittsburgh, Pennsylvania, USA (1995).

F.S. Olise et al., Journal of Radiation and Nuclear Applications. 2, 95 (2017). http://dx.doi.org/10.18576/jrna/020303.

J.O. Oti Wilberforce, IOSR Journal of Applied Chemistry. 9, 15 (2016).

N.M. Halden, J.L. Campbell and W. J. Teesdale, The Canadian Mineralogist. 33, 293 (1995).

C.H. Heirwegh, J.L. Campbell and G.K. Czamanske, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 366, 40 (2016). https://doi.org/10.1016/j.nimb.2015.10.018.

A.T. Rao and V.R.R.M. Babu, American Mineralogist. 63, 330 (1978).

A. Sriramadas and A.T. Rao, Journal Geological Society of India 20, 512 (1979).

R. Kar, Journal of Earth System Science 110, 337 (2001). https://doi.org/10.1007/BF02702899

P. Saradhi, M. Arima, A.T. Rao and M. Yoshida, Journal of Geosciences, Osaka City University.43, 177 (2000).

G.K. Czamanske, T.W. Sisson, J.L. Campbell and W.J. Teesdale, American Mineralogist. 78, 893(1993).

C.G. Ryan, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 219, 534 (2004). https://doi.org/10.1016/j.nimb.2004.01.117

G.C. Wilson et al., Nuclear instruments and methods in physics research B; Beam Interactions with Materials and Atoms. 189, 387 (2002). http://dx.doi.org/10.1016/S0168-583X(01)01095-3

D.C. Kamineni, M. Bandari and A.T. Rao, American Mineralogist. 67, 1001 (1982).

J.A. Maxwell, W.J. Teesdale and J.L. Campbell, Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms. 95, 407 (1995). https://doi.org/10.1016/0168-583X(94)00540-0

W.B. Barnett, Spectrochimica Acta. Part B, Atomic Spectroscopy. 39, 829 (1984). https://doi.org/10.1016/0584-8547(84)80091-9

J.L. Campbell and J. Willcam, The Canadian Mineralogist. 33, 293 (1995).

K. Ishii, X-ray Spectrometry. 34, 363 (2005). http://dx.doi.org/10.1002/xrs.838.

K. Murozono et al., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 150, 76 (1999). https://doi.org/10.1016/S0168-583X(98)00918-5

J. Miranda, Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms. 118, 346 (1996). https://doi.org/10.1016/0168-583X(95)01176-5.

K. Ishii and S. Morita, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and atoms.34, 209 (1988). https://doi.org/10.1016/0168-583X(88)90745-8.

A.V.S. Satyanarayana, S.R. Kumar and S.V.R.A.N. Sharma, Journal of Nuclear Physics,Material Sciences, Radiation and Applications. 3, 147 (2016). https://doi.org/10.15415/jnp.2016.32016.

P.C. Chaves, A. Taborda, D.P.S. de Oliveira and M.A. Reis, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 318, 37 (2014). https://doi.org/10.1016/j.nimb.2013.05.098.

M. Ahmed, Journal of Radioanalytical and Nuclear Chemistry 265, 39 (2004). http://dx.doi.org/10.1007/s10967-005-0786-6.

M. Hajivaliei et al., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 160,203 (2000). https://doi.org/10.1016/S0168-583X(99)00587-X .

I. Borbely-Kiss et al., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 12, 496 (1985). https://doi.org/10.1016/0168-583X(85)90506-3.

P. Ana et al., Romanian Reports in Physics. 63, 997 (2011). https://www.academia.edu/18311900/PIXE_analysis_of_some_vegetal_species

J.J.G Durocher, N.M. Halden, F.C. Hawthorne and J.S.C. McKee, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 30, 470 (1988). https://doi.org/10.1016/0168-583X(88)90043-2.

M.G. Budnar, Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms. 109-110, 144 (1996) https://doi.org/10.1016/0168-583X(95)00896-9.

F. Munnik, Phd Thesis, Eindhoven University of Technology (1994). 


Issue
 
 
How to Cite
Avupati, V. S. S.; M. Jagannadharao; K. Chandra Mouli; B. Seetaramireddy. The Performance of PIXE Technique through a Geochemical Analysis of High Grade Rocks. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 13-28.
 

 

 

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...