Monday 5 February 2018

Clustering aspects in 20Ne Alpha-conjugate Nuclear System

 

  • Manpreet KaurDepartment of Physics, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, India
  • Birbikaram SinghDepartment of Physics, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, India
  • S.K. PatraInstitute of Physics, Bhubaneswar- 751005, India
  • Raj K. GuptaDepartment of Physics, Panjab University, Chandigarh-160014, India
Keywords: Clusters, Alpha conjugate nuclear system, Preformation probability

Abstract

The clustering aspects in alpha-conjugate nuclear system 20Ne has been investigated comparatively within microscopic and macroscopic approaches of relativistic mean field theory (RMFT) and quantum mechanical fragmentation theory (QMFT), respectively. For the ground state of 20Ne, the matter density distribution calculated within RMFT, depict the trigonal bipyramidal structure of 5α’s and within QMFT, the equivalent α+16O cluster configuration is highly preformed. For excited state corresponding to experimental available energy, the QMFT results show that in addition to α+16O clusters, other xα-type clusters (x is an integer) are also preformed but in addition np-xα type (n, p are neutron and proton, respectively) 10B clusters are having relatively more preformation probability, due to the decreased pairing strength in liquid drop energies at higher temperature. These results are in line with RMFT calculations for intrinsic excited state which show two equal sized fragments, probably 10B clusters.

References

L. R. Hafstad and E. Teller, Phys. Rev. 54, 681 (1938) https://doi.org/10.1103/ PhysRev.54.681; F. Hoyle, D. N. F Dunbar, W. A. Wenzel, and W. Whaling, Phys. Rev. 92, 1095c (1953); Minutes of the New Mexico Meeting, Alberquerque, September 2–5; C. W. Cook, W. A. Fowler, and T. Lauritsen, Phys. Rev. 107, 508 (1957).

K. Ikeda, N. Takigawa, and H. Horiuchi, Prog. Theor. Phys. Suppl. E68, 464 (1968) https://doi.org/10.1143/PTPS.E68.464; W. Von Oertzen et al., Eur. Phys. J.A 11, 403 (2001) https://doi.org/10.1007/s100500170052; W. Von Oertzen, M. Freer, and Y. Ka-Enyo, Phys. Rep. 432, 43 (2006) https://doi.org/10.1016/j.physrep.2006.07.001.

J. P. Ebran, E. Khan, T. Niksic, and D.Vretenar, Nature 487, 341 (2012) https:// doi.org/10.1038/nature11246; Phys. Rev. C 87, 044307 (2013) https://doi.org/10.1103/PhysRevC.87.044307.

R. K. Sheline and K. Wildermuth, Nucl. Phys. 21, 196 (1960) https://doi. org/10.1016/0029-5582(60)90046-8; F. D. Becchetti, K. T. Hecht, J. Janecke, and D. Overway, Nucl. Phys. A 339, 132 (1980) https://doi.org/10.1016/03759474(80)90246-8; D. Jenkins, J. Phys. Conf. Series 436, 012016 (2013) https://doi.org/10.1088/1742-6596/436/1/012016.

T. Yahmaya, Phys. Lett. B 306, 1 (1993) https://doi.org/10.1016/03702693(93)91128-A; M. Freer and A. C. Merchant, J. Phys. G 23, 261 (1997) https://doi.org/10.1088/0954-3899/23/3/002; M. Freer, Rep. Prog. Phys. 70, 2149 (2007) https://doi.org/10.1088/0034-4885/70/12/R03; E. D. Johnson et al., Eur. Phys. J. A 42, 135 (2009) https://doi.org/10.1140/epja/i2009-10887-1.

Y . Kanada-En’yo, M. Kimura, and A. Ono, Prog. Theor. Exp. Phys. 01A202 (2012).

H. Feldmeier, J. Schnack, Rev. Mod. Phys. 72, 655 (2000) https://doi.org/10.1103/RevModPhys.72.655.

P. Arumugam et al., PRC 71, 064308 (2005) https://doi.org/10.1103/PhysRevC.71.064308;

B. B. Singh, M. Kaur, V. Kaur, and R. K. Gupta, EPJ Web Conf. 86, 00048 (2015); JPS Conf. Proc 6, 030001 (2015); M. Kaur, B.B. Singh, S.K. Patra, and R.K. Gupta, Phys. Rev. C 95, 014611 (2017) https://doi.org/10.1103/ PhysRevC.95.014611; Proc. DAE Symposium on Nucl. Phys. 62, 506 (2017).

W. B. He et al., arXiv:1602.08955v3 [nucl-th] June, 2016.

Y. K. Gambhir, P. Ring, and A. Thimet, Ann. Phys. (NY) 198, 132 (1990) https:// doi.org/10.1016/0003-4916(90)90330-Q; C. E. Price and G. E. Walker, Phys. Rev. C 36, 354 (1987) https://doi.org/10.1103/PhysRevC.36.354; Y. Sugahara and H. Toki, Nucl. Phys. A579, 557 (1994) https://doi.org/10.1016/03759474(94)90923-7; P. K. Panda et al., Int. J. Mod. Phys. E 6, 307 (1997) https://doi.org/10.1142/S0218301397000202.

B.K. Sharma et al., JPG: Nucl. Part. Phys. 32, L1 (2006) https://doi.org/10.1088/0954-3899/32/1/L01.

J. Maruhn and W. Griener, Phys. Rev. Lett. 32, 548 (1974) https://doi.org/10.1103/PhysRevLett.32.548.

Raj K. Gupta et al., Phys. Rev. Lett. 35, 353 (1975) https://doi.org/10.1103/ PhysRevLett.35.353; Phys. Lett. B 60, 225 (1976) https://doi.org/10.1016/03702693(76)90286-0; Phys. Lett. B 67, 257 (1977) https://doi.org/10.1016/03702693(77)90364-1; Z. Physik A 283, 217 (1977) https://doi.org/10.1007/BF01418714.

H. Kröger and W. Scheid, J. Phys. G: Nucl. Phys. 6, L85 (1980) https://doi.org/10.1088/0305-4616/6/4/006.

W. D. Myers and W. D. Swiatecki, Nucl. Phys. 81, 1 (1966) https://doi.org/10.1016/0029-5582(66)90639-0.

J. Blocki, J. Randrup, W. J. Swiatecki, and C. F. Tsang, Ann. Phys. (NY) 105, 427 (1977) https://doi.org/10.1016/0003-4916(77)90249-4.

M. Bansal, R. Kumar, and R. K. Gupta, J. Phys.: Conf. Ser. 321, 012046 (2011) https://doi.org/10.1088/1742-6596/321/1/012046.

M. M. Coimbra et al., Nucl. Phys. A 535, 161 (1991) https://doi.org/10.1016/0375-9474(91)90521-7.

G.V. Rogachev et al., Prog. Theor. Phys. Suppl. 196, 184 (2012) https://doi.org/10.1143/PTPS.196.184; J. Phys.: Conf. Ser. 569, 012004 (2014) https://doi.org/10.1088/1742-6596/569/1/012004.


Issue


How to Cite
Manpreet Kaur; Birbikaram Singh; S.K. Patra; Raj K. Gupta. Clustering Aspects in 20Ne Alpha-Conjugate Nuclear System. J. Nucl. Phy. Mat. Sci. Rad. A. 20185, 319-326.

Mass Attenuation Coefficient Measurements of Some Nanocarbon Allotropes: A New Hope for Better Low Cost Less-Cumbersome Radiation Shielding Over A Wide Energy Range

 

  • E. RajasekharDepartment of Physics, Rayalaseema University, Kurnool, A.P., India
  • K.L. NarasimhamDepartment of Physics, Kakinada Institute of Technology & Science, Divilli, Tirupathi (V) 533433, A.P.,India
  • Aditya D. KurdekarDepartment of Physics, Sri Sathya Sai Institute of Higher Learning, Prashanthinilayam 515134 A.P., India
  • L.A. Avinash ChunduriAndhra Pradesh Medtech Zone, AMTZ, Vishakhapatnam, 530045, A.P. India
  • Sandeep ParnaikAndhra Pradesh Medtech Zone, AMTZ, Vishakhapatnam, 530045, A.P. India
  • K. venkataramaniahDepartment of Physics, Sri Sathya Sai Institute of Higher Learning, Prashanthinilayam 515134 A.P., India
Keywords: Graphene, SWCNTs, MWCNTs, Mass attenuation coefficient, NaI (Tl) detector

Abstract

The mass attenuation coefficients of graphene, MWNTs and, SWNTs have been measured for gamma energy range 356 to 1332 keV from the radioactive sources 60Co, 133Ba and 137Cs using a well calibrated gamma ray spectrometer consisting of a 3 ́ ́x 3 ́ ́ NaI(Tl) scintillation detector coupled to a PC based 8K nuclear Multi Channel Analyser (MCA). In an interesting way results showed that MWNTs had the highest values of mass attenuation coefficients indicating their potential use as the best shielding material.

References

T. Fujikawa and H. Arai, J. Elec. Spect. Relat. Phenom. 174 (2009) 85–92. https://doi.org/10.1016/j.elspec.2009.07.007

T. Fujikawa, J. Elec. Spect. Relat. Phenom. 173 (2009) 51–78. https://doi.org/10.1016/j.elspec.2009.04.011

K. Sawada, S.Murakami and N. Nagaosa, Phys. Rev. Lett. 96 (2006) 154802. https://doi.org/10.1103/PhysRevLett.96.154802

A.N. Lagarkov, and A.K. Sarychev, Phys. Rev. B 53 (1996) 6318–6336. https://doi.org/10.1103/PhysRevB.53.6318

Z. Peng, J. Peng and Y. Ou, Phys. Lett. A 359 (2006) 56–60. https://doi.org/10.1016/j.physleta.2006.05.076

S.B. Tooski, J. Appl. Phys. 109 (2011) 14318–14324. https://doi.org/10.1063/1.3525059

K.L. Dudley, R.W. Lawrence, Nano Lett. 5 (2005) 2131–2134. https://doi.org/10.1021/nl051375r

Z. Liu, G. Bai, Yi. Huang, Y. Ma, F. Du, F. Li, T. Guo, Y.Chen, Carbon. 45 (2007) 821–827. https://doi.org/10.1016/j.carbon.2006.11.020

A.L. Higginbotham, P.G. Moloney, M.C. Waid, J.G. Duque, C. Kittrell, H.K. Schmidt, J.J. Stephenson, S. Arepalli, L.L.Yowell, J.M. Your, Comp. Sci. and tech. 68 (2008) 3087–3092.

Gamma Vision -32, 1998.Ver 5.10.EG & G, ORTEC.

I. Kaplan , Nuclear Physics, Addison-Wesley, New York, 1972.

J.H. Hubbell, and S.M. Seltzer, NIST Standard Database 126, National Institute of Standards and Technology; Gaithersburg, MD, July 2004.

J. Lu., D. Yuan, L. Jie, L. Weinan, E.K. Thomas, Nano Lett.. 8 (2008) 3325–3329. https://doi.org/10.1021/nl801744z

P. R. Bandaru and A. M. Rao, JOM 59, 33 2007 Special Issue on Nanomaterials for Electronic Applications. https://doi.org/10.1007/s11837-007-0036-1

S. H. Park, P. Theilmann, K. Yang, A. M. Rao, and P. R. Bandaru, Applied Physics Letters 96, 043115 2010 https://doi.org/10.1063/1.3292214

L. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd ed. Butterworth-Heinemann, Boston, 1995.

F.J. Garcia-Vidal, J.M. Pitarke, J.B. Pendry, Phys Rev Lett. 78 (1997) 4289–4292. https://doi.org/10.1103/PhysRevLett.78.4289

Z. Ye, W.D. Deering, A. Krokhin, J.A. Roberts, Phys Rev B. 74 (2006) 075425–5. https://doi.org/10.1103/PhysRevB.74.075425



Issue

How to Cite
E. Rajasekhar; K.L. Narasimham; Aditya D. Kurdekar; L.A. Avinash Chunduri; Sandeep Parnaik; K. venkataramaniah. Mass Attenuation Coefficient Measurements of Some Nanocarbon Allotropes: A New Hope for Better Low Cost Less-Cumbersome Radiation Shielding Over A Wide Energy Range . J. Nucl. Phy. Mat. Sci. Rad. A. 20185, 311-317.

Effective Atomic Number Dependence of Radiological Parameters of Some Organic Compounds at 122 KeV Gamma Rays

 

  • Mohinder SinghDepartment of Basic and Applied Sciences, Punjabi university, Patiala, 147002.
  • Akash TondonDepartment of Physics, Punjabi university, Patiala, 147002.
  • Bhajan SinghDepartment of Physics, Punjabi university, Patiala, 147002.
  • B. S. SandhuDepartment of Physics, Punjabi university, Patiala, 147002.
Keywords: Effective atomic number, mass-energy absorption coefficient, mass attenuation coefficient, HVL, CT number

Abstract

Mass attenuation coefficient is a fundamental parameter of radiation interaction, from which the other radiological parameters like half Value Layer [HVL], tenth Value Layer [TVL], total atomic and electronic cross-sections, mass energy absorption coefficient, KERMA, CT number and effective atomic number are deduced. These parameters are extensively required in a number of fields such as diagnostic radiology, gamma ray spectroscopy, fluorescence analysis and reactor shielding. In the present work, mass attenuation coefficients are determined experimentally for some organic compounds at 122 keV incident photons using narrow-beam transmission geometry to establish a relation between effective atomic number (Zeff) and other deduced parameters. The experimental data for all these parameters are compared with the values deduced from WinXcom software package and are found to agree within experimental estimated errors. This study gives some insight about the photon interaction in some organic compounds whose effective atomic numbers match with some human body fluids.

References

G. J. Hine, Phys. Rev., 85, 725 (1952).

J. H. Hubbell, Int. J. Appl. Radiat. Isot., 33, 1269 (1982). https://doi.org/10.1016/0020-708X(82)90248-4

J. H. Hubbell and S. M. Selzer, NISTIR, 5632 (1995).

L. Gerward, N. Guilbert, K. B. Jensen and H. Levring, Radiat. Phys. Chem., 71, 653 (2004).

S. R. Manohara and S. M. Hanagodimath, Nucl. Instr. and Meth. B, 258, 321 (2007). https://doi.org/10.1016/j.nimb.2007.02.101

M. P. Singh, B. S. Sandhu and B. Singh, Phys. Scripta, 76, 281 (2007). https:// doi.org/10.1088/0031-8949/76/4/001

I. Akkurt, S. Kilincarslan and C. Basyigit, Ann. Nucl. Eng., 31, 577 (2004). https://doi.org/10.1016/j.anucene.2003.07.002

I. Han and L. Demir, J. X-Ray Sci. Techno., 18, 39 (2010).

M. Buyukyildiz, M. Kuurudirek, M. Ekici, O. Icelli and Y. Karabul, Prog. Nucl. Energ., 100, 245 (2017). https://doi.org/10.1016/j.pnucene.2017.06.014

S. R. Manohara, S. M. Hanagodimath and L. Gerward, J. Nucl. Mater., 393, 465 (2009). https://doi.org/10.1016/j.jnucmat.2009.07.001

D. F. Jackson and D. J. Hawkes, Phys. Rep., 70, 169 (1981). https://doi.org/10.1016/0370-1573(81)90014-4

D. C. Creagh, Nucl. Instrum. Methods A, 255, 1 (1987). https://doi.org/10.1016/0168-9002(87)91064-3



Issue

How to Cite
Mohinder Singh; Akash Tondon; Bhajan Singh; B. S. Sandhu. Effective Atomic Number Dependence of Radiological Parameters of Some Organic Compounds at 122 KeV Gamma Rays . J. Nucl. Phy. Mat. Sci. Rad. A. 20185, 299-310.

Sunday 17 September 2017

Determination of Cu, Zn, Mn & Fe Metals in Soil Employing the EDXRF & FAAS Techniques and Comparative Study of Results

VIRENDRA SINGH1,* , DIWAKAR PADALIA2 , KAMAL DEVLAL3

1 Department of Physics, G. B. Pant University of Ag. & Tech., Pantnagar, U.S.Nagar 263145, India

2 Department of Physics, K.R Mangalam University, Gurgaon 122103, India

3 Department of Physics, School of Science, Uttarakhand Open University, Haldwani 263139, India

Abstract Two analytical spectroscopic techniques viz. EDXRF and FAAS were employed in analyzing the four heavy metals i.e. Cu, Zn, Mn and Fe in 24 soil samples. The heavy metals in understudy soil were found to have very low to high concentration range and so both techniques were compared for a broader range of concentrations. Two methods, open vessel digestion and microwave oven digestion, were used to prepare the liquid samples for FAAS analysis. The results of both of the EDXRF and FAAS techniques were found comparable when high concentration element Fe was determined. However, for the low concentration values, the results were dissimilar. Some statistical methods like regression and Levene’s test are used to compare the results of both the techniques.

DOI: https://doi.org/10.15415/jnp.2017.42032

LINK: http://dspace.chitkara.edu.in/jspui/bitstream/1/829/4/42033_JNP_varindra.pdf

Binary Fission fragmentation of 184 466,476X

S. SUBRAMANIAN1,2, C. KARTHIKRAJ3 , AND S. SELVARAJ1

1 Department of Physics, The M. D. T. Hindu College Tirunelveli - 627010, Tamilnadu, India.

2 Department of Physics, V. O. Chidambaram College Tuticorin - 628008, Tamilnadu, India.

3 Department of Physics, Nanjing University Nanjing - 210093, People’s Republic of China.

Email: ssmanian73@gmail.com

Abstract Based on the statistical theory of fission, we discuss here the binary fission fragmentation of these giant nuclear systems formed in low energy U + U collisions. Here, the mass and charge distribution of fragments from the binary fission of these systems are studied at T = 1 and 2 MeV. From our results at T = 1 MeV, fragments in the near-asymmetric and near-symmetric regions pronounce higher yield values. However, at T = 2 MeV, our results are grossly different. Furthermore, the binary fragmentation with the largest yield consists of at least one closed shell nucleus. Different possible binary fission modes are presented to look for U + Ugiant nuclear systems.

DOI: https://doi.org/10.15415/jnp.2017.42032

LINK: http://dspace.chitkara.edu.in/jspui/bitstream/1/828/4/42032_JNP_Subramanian.pdf

Understanding the Basics of Final Unification With Three Gravitational Constants Associated With Nuclear, Electromagnetic and Gravitational Interactions

U. V. S. SESHAVATHARAM1 AND S. LAKSHMINARAYANA2

1 Honorary Faculty, I-SERVE, Survey no-42, Hitex road, Hitech city, Hyderabad-84, Telangana, India.
2 Department of Nuclear Physics, Andhra University, Visakhapatnam-03, AP, India

Email: seshavatharam.uvs@gmail.com

Abstract With three fundamental gravitational constants assumed to be associated with strong interaction, electromagnetic interaction and gravity, we review the basics of final unification.

DOI:https://doi.org/10.15415/jnp.2017.42031

LINK: http://dspace.chitkara.edu.in/jspui/bitstream/1/827/4/42031_JNP_Seshavatharam.pdf

Possible Alpha and 14C Cluster Emission From Hyper Radium Nuclei in The Mass Region A = 202-235

K. P. SANTHOSH AND C. NITHYA

School of Pure and Applied Physics, Kannur University, Swami Anandatheertha Campus, Payyanur 670327, INDIA

Email: drkpsanthosh@gmail.com

Abstract The possibilities for the emission of 4 He and 14C clusters from hyper 202 235 - Λ Ra are studied using our Coulomb and proximity potential model (CPPM) by including the lambda-nucleus potential. The predicted half lives show that hyper Λ 202 231 - Ra nuclei are unstable against 4 He emission and 14C emission from Λ 217 229 - Ra are favorable for measurement. Our study also show that hyper Λ 202 235 - Ra are stable against hyper Λ 4 He and Λ 14C emission. The role of neutron shell closure (N = 126) in Λ 213Rn daughter and role of proton and neutron shell closure (Z = 82, N = 126) in Λ 209Pb daughter are also revealed. As hyper nuclei decays to normal nuclei by mesonic/non-mesonic decay and since most of the predicted half lives for 4 He and 14C emission from normal Ra nuclei are favorable for measurement, we presume that alpha and 14C cluster emission from hyper Ra nuclei can be detected in laboratory in a cascade (two-step) process..

DOI: https://doi.org/10.15415/jnp.2017.42030

LINK: http://dspace.chitkara.edu.in/jspui/bitstream/1/826/4/42030_JNP_Santosh01.pdf

Heavy-ion Fusion Cross Sections of 32 S on 90,96 Zr Targets Using Coulomb and Proximity Potential

K. P. Santhosh and V. Bobby Jose



Abstract The fusion excitation functions for the fusion of 32S on 90,96Zr have been calculated larger value, while using one-dimensional barrier penetration model, taking scattering potential as the sum of Coulomb and proximity potential and the calculated values are compared with experimental data with considerations to shape degrees of freedom. At and above the barrier the computed cross sections match well with the experimental data, whereas below the barrier, calculations with nuclear surface tension coefficient improved by Reisdorf in the proximity potential with considerations to shape degrees of freedom give an approximate fit. Reduced reaction cross sections for the systems 32S on 90,96Zr have also been described.




The Dependence of Surface Diffuseness Parameter on N/Z Ratio of The Fusion of Neutron-Rich Colliding NucleiDepartment of Applied Sciences, Chitkara University, Solan – 164103 (H.P.), India.

SUMAN MITTAL AND ISHWAR DUTT*

Department of Applied Sciences, Chitkara University, Solan – 164103 (H.P.), India.

*Email: ishwar.dutt1@chitkarauniversity.edu.in

Abstract Surface diffuseness parameter used in Woods-Saxon form of potential have been extracted from a large number of experimentally studied neutron-rich fusion cross sections at near barrier energies. The results of our systematic study reveals that the extracted diffuseness parameter depend linearly on the N/Z ratio of the fusing nuclei. Further, we demonstrated that the extracted values of surface diffuseness parameter lies within the range a = 0.40 to 0.73 fm as compared to commonly accepted value form elastic scattering data i.e. 0.63 fm.

DOI: https://doi.org/10.15415/jnp.2017.42028

LINK: http://dspace.chitkara.edu.in/jspui/bitstream/1/824/4/42028_JNP_Ishwar.pdf

Influence of Mo6+ on Dielectric properties of Copper Ferrites

B.V. RAO, P.V.L. NARAYANA AND A.D.P. RAO

Department of Nuclear Physics, Andhra University, Visakhapatnam, India.

Email: research.angalakuduru@yahoo.com

Abstract: Two series of copper ferrites are prepared using the chemical compositional formula Cu 1.0-3y Fe 2.0-2xMo x + yO4.0. They are calcinated at 750 C and sintered at 950C. When x =y = 0.0, the ε′ of the basic copper ferrite is probably due to electronic exchange interactions of copper and iron ions as Cu2+ ↔ Cu1+ and Fe3+ ↔ Fe2+. The observed value of dielectric constant (є′) decreases as a function of substituent concentration (x) up to x = 0.20 and for further values of ‘x’ it found to increase. In the case of ‘C’ (x = 0) series ferrites є′ decreases with substituent concentration (y) up to y = 0.04, later it found to increase. The dispersion of ac resistivity with frequency is observed indicating their strong dependence on frequency as in the case of dielectric behaviour. These results are explained with different possible mechanisms.
.

DOI: https://doi.org/10.15415/jnp.2017.42027

LINK: http://dspace.chitkara.edu.in/jspui/bitstream/1/823/4/42027_JNP_Rao.pdf

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...