Tuesday 8 September 2020

Effect of Laser Radiation on Biomolecules

 

  • E. Prieto
    Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cuernavaca-62210, Mexico
  • L. X. Hallado
    Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cuernavaca-62210, Mexico
  • A. Guerrero
    Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cuernavaca-62210, Mexico
  • I. Álvarez
    Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cuernavaca-62210, Mexico
  • C. Cisneros
    Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cuernavaca-62210, Mexico
Keywords: Nitrogenous bases, Ionic fragments, Uracil, Adenine

Abstract

Time of flight laser photoionization has been used to study the response of some molecules of biological interest under laser radiation. One of the questions of great interest today is the effect of radiation on DNA and RNA molecules. Damage to these molecules can be caused directly by radiation or indirectly by secondary electrons created by radiation. As response of the radiation field fragmentation process can occur producing different ions with kinetic energies of a few electron volts. In this paper we present the results of the interaction of 355nm laser with the nitrogen bases adenine(A) and uracil(U) using time-of-flight spectrometry and the comparison of experimental results on the effects of laser radiation in (A) and (U) belonging to two different ring groups, purines and pyrimidines respectively, which are linked to form the AU pair of the RNA.

 

References

A. P. Schuch et al., Fre. Radic. Biol. Med. 107, 110 (2017). https://doi.org/10.1016/j.freeradbiomed.2017.01.029

T. M. Rüngerc and U. P. Kappes, Photodermatol. Photoimmuno. Photomed. 24, 2 (2008). https://doi.org/10.1111/j.1600-0781.2008.00319.x

C Champion, et al., J. of Phys.: Conf. Series. 373, 012004 (2012). https://doi.org/10.1088/1742-6596/373/1/012004

H. Levola et al., Int. J. of Mass Spectrom. 353, 7 (2013). https://doi.org/10.1016/j.ijms.2013.08.008

M. Schwell, et al., Chem. Phys. 353, 145 (2008). https://doi.org/10.1016/j.chemphys.2008.08.009

H.-W. Jochims et al., Chemi. Phy. 314, 263 ( 2005). https://doi.org/10.1016/j.chemphys.2005.03.008

G. F. Joyce, Nature 418, 214 (2002). https://doi.org/10.1038/418214a

O. Ghafur et al, J. Chem. Phys. 149, 034301 (2018). https://doi.org/10.1063/1.5034419

M. A. Rahman and E. Krishnakumara, J. Chem. Phys. 144, 161102 (2016). https://doi.org/10.1063/1.4948412

M. Ryszka et al, Int. J. Mass Spectrom. 396, 48 (2016). https://doi.org/10.1016/j.ijms.2015.12.006

A. Ostroverkh, A. Zavilopulo and Otto Shpenik, Eur. Phys. J. D. 73, 38 (2019). https://doi.org/10.1140/epjd/e2019-90532-3

T. M. Maddern, et al., Int. J. Mass Spectrom. 409, 73 (2016). https://doi.org/10.1016/j.ijms.2016.09.021

L. V. Keldysh, Sov. Soviet Phys. JETP 20, 1307 (1965).

B. Barc, et al., J. Chem. Phys. 139, 244311 (2013). https://doi.org/10.1063/1.4851476

M. J. DeWitt and R. J. Levis, J. Chem. Phys. 110, 11368 (1999). https://doi.org/10.1063/1.479077

L. X. Hallado, et al., J. Nuc. Phys, Mat. Sci. Rad. A. 6, 103 (2018). https://doi.org/10.15415/jnp.2018.61018

 

Issue
 

How to Cite
E. Prieto; L. X. Hallado; A. Guerrero; I. Álvarez; C. Cisneros. Effect of Laser Radiation on Biomolecules. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 123-128.
 

Dose rate profile inside the spent fuel storage pool in case of full capacity storage

 

  • Amr Abdelhady
    Reactors Department, Nuclear Research Center, Atomic Energy Authority, 13759 Cairo, Egypt
Keywords: Radiation dose, Spent fuel, Storage pool

Abstract

This study aims to evaluate the radiation dose rate distribution inside temporary spent fuel open-pool storage. The storage pool is connected to the main pool via transfer channel to facilitate transporting the spent fuel under water that avoiding radiation dose rising in the working area in the reactor. The storage pool was prepared to store 800 spent fuel elements that considering the maximum capacity of storage. The spent fuel elements in the storage pool have different decay times depending on the times of extraction from the core. Assuming conservatively, that the spent fuels of the 5-years decay time would be stored in the lower rack and the spent fuels, of decay time ranged between 10 days and 5 years, would be stored in the upper rack. The dose rate was profiled in the region above the upper rack using SCALE/MAVRIC code applying adjoint flux calculation as a variance reduction technique. The results show that the dose rate values in the region above the pool surface would be lower than the permissible limits.

 

References

A. Abdelhady, Journal of Nuclear Engineering and Radiation Science 4, 021010 (2018). https://doi.org/10.1115/1.4038058

A. Abdelhady, Radiation Protection and Environment 41, 197 (2018). https://doi.org/10.4103/rpe.RPE_67_18

Scale: A Comprehensive Modeling and Simulation Suite for Nuclear Safety Analysis and Design, ORNL/TM-2005/39 Version 6.1, June 2011.

A. G. Croff, ORNL/TM-7175, Oak Ridge National Laboratory, Oak Ridge, TN (1980).

D. E. Peplow, Nucl. Technol. 174, 289 (2011). https://doi.org/10.13182/NT174-289

T. M. Evans, A. S. Stafford, R. N. Slaybaugh and K. T. Clarno, Nucl. Technol. 71, 171 (2010). https://doi.org/10.13182/NT171-171

J. C. Wagner and A. Haghighat, Nucl. Sci. Eng. 128, 186 (1998). https://doi.org/10.13182/NSE98-2

International Commission on Radiation Units and Measurements, ICRU Report 57 (ICRU, Bethesda, 1998).

ICRP (International Commission on Radiation Protection) (1991). Recommendations of the International Commission on Radiation Protection, Pergamon Press, Oxford, England, ICRP Publication 60.

 

 

How to Cite
Abdelhady, A. Dose Rate Profile Inside the Spent Fuel Storage Pool in Case of Full Capacity Storage. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 8, 7-10.

Homogenization Effects of VVER-1000 Fuel Assembly on Criticality Calculations

 

  • Sardar Muhammad Shauddin
    Reactor Physics & Engineering Division, Institute of Nuclear Science & Technology, Atomic Energy Research Establishment, Ganakbari, Savar, Dhaka-1349, Bangladesh
Keywords: Homogenization effect, Criticality calculation, Thermal neutron, Point kinetic parameter, VVER-1000

Abstract

Due to cost effective and simplicity homogeneous reactors have been widely used for experimental and research purposes. Parameters which are difficult to get from a heterogeneous reactor system can be easily obtained from a homogeneous reactor system and can be applied in the heterogeneous reactor system if the major parametric differences are known. In this study, homogenization effects of VVER (Water Water Energetic Reactor)-1000 fuel assembly on neutronic parameters have been analyzed with the universal probabilistic code MCNP (Monte Carlo N-Particle). The infinite multiplication factor (khas been calculated for the reconfigured heterogeneous and homogenous fuel assembly models with 2 w/o U-235 enriched fuel at room temperature. Effect of mixing soluble boron into the moderator/coolant (H2O) has been investigated for both models. Direct and fission detected thermal to higher energy neutron ratio also has been investigated. Relative power distributions of both models have been calculated at critical and supercritical states. Burnup calculations for both the reconfigured cores have been carried out up to 5 years of operation. Effective delayed neutron fraction (βeff) and prompt removal lifetime () also have been evaluated. All the results show significant differences between the two systems except the average relative power.

 

References

A. Hebert and P. Benoist, Nucl. Sci. Eng. 109, 360 (1991). https://doi.org/10.13182/NSE109-360

J. Mondot, Proc. Specialists’ Mtg. Homogenization Methods in Reactor Physics, Lugano, Switzerland, November 13–15, 1978, IAEA-TECDOC-231, p.389, International Atomic Energy Agency (1980).

International Atomic Energy Agency (IAEA), IAEATECDOC-847, Vienna, 1995.

S. M. Shauddin, M. S. Mahmood and M. J. H. Khan, International Journal of Nuclear Energy Science and Technology 11, 175 (2017). https://doi.org/10.1504/IJNEST.2017.085775

Bernard, J. A., “Nuclear Power Plant Dynamics and Control”, Class Notes, Massachusetts Institute of Technology, Massachusetts, 22, 921 (2012).

X-5 Monte Carlo Team, “MCNP – A General Monte Carlo N-Particle Transport Code”, Version 5, LA-UR-03-1987 (revised October 3rd, 2005).

X-5 Monte Carlo Team, “MCNP – A General Monte Carlo N-Particle Transport Code”, Version 5, LACP-03-0245, April 24, 2003 (revised October 3rd, 2005; February 1st, 2008).

R. K. Meulekamp, S. C. van der Marck, Nuclear Science and Engineering 152, 142 (2006). https://doi.org/10.13182/NSE03-107

B. C. Kiedrowski et al., MCNP5-1.60 Feature Enhancement & Manual Clarifications, Los Alamos National Laboratory, LA-UR-10-06217 (2010).

M. B. Chadwick et al., Nuclear Data Sheets 107, 2931 (2006). https://doi.org/10.1016/j.nds.2006.11.001

 

 

How to Cite

Shauddin, S. M. Homogenization Effects of VVER-1000 Fuel Assembly on Criticality Calculations. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 8, 1-6.

A GEANT4 Study of a Gamma-ray Collimation Array

 

  • J A López
    Physics Department, University of Texas at El Paso, El Paso, Texas, 79968 U.S.A.
  • S S Romero González
    Physics Department, University of Texas at El Paso, El Paso, Texas, 79968 U.S.A.
  • O Hernández Rodríguez
    Physics Department, University of Texas at El Paso, El Paso, Texas, 79968 U.S.A.
  • J Holmes
    Physics Department, Arizona State University, Tempe, Arizona, 85281 U.S.A.
  • R Alarcón
    Physics Department, Arizona State University, Tempe, Arizona, 85281 U.S.A.
Keywords: Proton therapy, Collimators, Gamma rays, GEANT4

Abstract

Proton beam therapy uses high-energy protons to destroy cancer cells which are still uncertain about where in the body they hit. A possible way to answer this question is to detect the gamma rays produced during the irradiation and determine where in the body they are produced. This work investigates the use of collimators to determine where the proton interactions occur. GEANT4 is used to simulate the gamma production of a source interacting with a collimator. Each event simulates a number of gammas obtained as a function of the position along the detector. Repeating for different collimator configurations can thus help determine the best characteristics of a detector device.

References

K. A. Camphausen, R. C. Lawrence, (2009). “Principles of Radiation Therapy”. In R. Pazdur, L. D. Wagman, K. A. Camphausen, W. J. Hoskins, (eds.) Cancer Management: A Multidisciplinary Approach. 11th ed., Cmp. United Business Media. ISBN-13: 978-1891483622.

W. P. Levin, H. Kooy, J. S.Loeffler, T. F., DeLaney, Proton Beam Therapy, British Journal of Cancer 93, 849 (2005). https://doi.org/10.1038/sj.bjc.6602754

James Metz, (2006). “Differences Between Protons and X-rays”. Abramson Cancer Center of the University of Pennsylvania. http://www.oncolink.org/treatment/article.cfm?c=9&s=70&id=210. Accessed 4 February 2018.

W. D. Newhauser and R. Zhang, Phys. Med. Biol. 60, R155 (2015). https://doi.org/10.1088/0031-9155/60/8/R155

Basics physics of nuclear medicine/interaction of radiation with matter. From https://en.wikibooks.org/wiki/Basic_Physics_of_Nuclear_Medicine/ Interaction_of_Radiation_with_Matter. Accessed 15/9/2019

M. Chiari, Joint ICTP-IAEA Workshop on Nuclear Data for Analytical Applications. (2013) http://indico.ictp.it/event/a12218/session/23/contribution/14/material/0/0.pdf. Accessed 15 October 2019.

Geant4 official website. http://geant4.cern.ch/support/introductionToGeant4.shtml. Accessed 1 February 2018.

Fiber Optical Networking. http://www.fiber-opticalnetworking.com/getting-know-fiber-collimator.html. Accessed 9 February 2018.

J. T. Bushberg, J. A. Seibert, E. M. Leidholdt, and J. M. Boone, “The Essential Physics of Medical Imaging”, Second ed., Philadelphia: Lippincott Williams & Wilkins, 2006, p. 261. ISBN 9780781780575.

S. S. Romero Gonzalez, (2018). Geant4 study of a gamma-ray collimator for proton therapy. M.S. Thesis, University of Texas at El Paso. https://digitalcommons.utep.edu/dissertations/AAI10822888/. Accessed 10 September 2019. 

 

 

How to Cite
J A López; S S Romero González; O Hernández Rodríguez; J Holmes; R Alarcón. A GEANT4 Study of a Gamma-Ray Collimation Array. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 217-221.

Graft-Copolymerization of Acrylate Monomers onto Chitosan Induced by Gamma Radiation: Amphiphilic Polymers and Their Behavior at The Air-Water Interface

 

  • M. Caldera-Villalobos
    Department of Radiation Chemistry and Radiochemistry, Institute of Nuclear Sciences, National Autonomous University of Mexico. Circuito Exterior, Ciudad Universitaria, 04510, Ciudad de México, México
  • B. Leal-Acevedo
    Radiation Safety and Radiation Unit, Institute of Nuclear Sciences, National Autonomous University of Mexico. Circuito Exterior, Ciudad Universitaria, 04510, Ciudad de México, México
  • V.M. Velázquez-Aguilar
    Faculty of Sciences, National Autonomous University of Mexico.. Ciudad Universitaria, 04510, Ciudad de México, México
  • M. D. P. Carreón-Castro
    Department of Radiation Chemistry and Radiochemistry, Institute of Nuclear Sciences, National Autonomous University of Mexico. Circuito Exterior, Ciudad Universitaria, 04510, Ciudad de México, México
Keywords: Ionizing radiation, Graft copolymer, Biobased polymers, Polymer coatings, LB films

Abstract

Graft polymerization induced by ionizing radiation is a powerful tool in materials science to modifying the physical properties of polymers. Chitosan is a biocompatible, biodegradable, antibacterial, and highly hydrophilic polysaccharide. In this work, we report the obtaining of amphiphilic polymers through graft polymerization of acrylic monomers (methyl acrylate, t-butyl acrylate, and hexyl acrylate) onto chitosan. The polymerization reaction was carried out by simultaneous irradiation of monomers and chitosan using a gamma radiation source of 60Co. The formation of Langmuir films of amphiphilic polymers was studied at the air-water interface through surface pressure versus main molecular area isotherms (Π-A) and hysteresis cycles of compression and decompression. Finally, it was analyzed the transferring of Langmuir films towards solid substrates to obtaining Langmuir-Blodgett films with potential application as an antibacterial coating. The microstructure of the Langmuir-Blodgett films was characterized by AFM microscopy observing a regular topography with roughness ranging between 0.53 and 0.6 μm.

References

A. Charlesby, in Proceedings of the Conference on Electrical Insulation & Dielectric Phenomena-Annual Report 1966, Pocono Manor, USA, edited by IEEE, 1966.

A. L. El Hadrami, I. El Hadrami, and F. Daayf, Mar. Drugs. 8, 968 (2010). https://doi.org/10.3390/md8040968

S. Ausar, I. Bianco, R. Badini, L. Castagna, N. Modesti, C. Landa, and D. Beltramo, J. Dairy Sci. 84, 361 (2001). https://doi.org/10.3168/jds.S0022-0302(01)74485-2

M. M. Rocha, M. Coimbra, and C. Nunes., Curr. Opin. Food Sci. 15, 61 (2017). https://doi.org/10.1016/j.cofs.2017.06.008

F. Gassara, C. Antzak, C. Ajila, S. Sarma, S. Brar, and M. Verma, J. Food Eng. 166, 80 (2015). https://doi.org/10.1016/j.jfoodeng.2015.05.028

H. Kurtbay, Z. Bekçi, M. Merdivan, and K. Yurdakoç, J. Agr. Food Chem. 56, 2541 (2008). https://doi.org/10.1063/1.5092422

O. Tastan, and T. Baysal, Food Chem. 237, 818 (2017). https://doi.org/10.1016/j.foodchem.2017.06.025

A. Martín Diana, D. Rico, J. Barat, and C. Barry, Ryan. Innov. Food Sci. Emerg. 10, 590 (2009). https://doi.org/10.1016/j.ifset.2009.05.003

O. Tastan, and T. Braysal, Food Chem. 180, 211 (2015). https://doi.org/10.1016/j.foodchem.2015.02.053

R. Castro Domingues, S. Braz Faria Junior, R. Berdardes Silva, V. Cardoso, and M. Hespanhol Miranda Reis, Process Biochem. 47, 467 (2012). https://doi.org/10.1016/j.procbio.2011.12.002

H. Liu, H. Li, W. Cheng, Y. Yang, and M. Z. C. Zhu, Acta Biomater. 2, 557 (2006). https://doi.org/10.1016/j.actbio.2006.03.007

H. Xu, and C. Simon, Jr. Biomaterials. 26, 1337 (2005). https://doi.org/10.1016/j.biomaterials.2004.04.043

Y. Sun, A. Chen, W. Sun, K. Shah, H. Zheng, and C. Zhu., Desalin. Water Treat. 148, 259 (2019). https://doi.org/10.5004/dwt.2019.23953

Y. Sun, M. Ren, W. Sun, X. Xiao, Y. Xu, H. W. H. Zheng, Z. Lui, and H. Zhu., Environ. Technol. 40, 954 (2017).https://doi.org/10.1080/09593330.2017.1414312

H. Harslan, U. Aytaç, T. Bilir, and S. Sen, Constr. Build. Mater. 204, 541 (2019). https://doi.org/10.1016/j.conbuildmat.2019.01.209

Lu. D., H. Wang, X. Wang, Y. Li, H. Guo, S. Sun, X. Zhao, Z. Yang, and Z. Lei, Carbohyd. Polym. 215, 20 (2019). https://doi.org/10.1016/j.carbpol.2019.03.065

A. Ibrahim, A. Saleh, E. Elsharma, E. Metwally, and T. Siyam, Int. J. Biol. Macromol. 121, 1287(2019). https://doi.org/10.1016/j.ijbiomac.2018.10.107

Y. Zhou, P. Dong, Y. Wei, J. Qian, and D. Hua, Colloid Surface B: Biointerfaces 132, 132(2015). https://doi.org/10.1016/j.colsurfb.2015.05.019

W. Pasaphan, T. Rattanawongwiboon, P. Rimdusit, and T. Piroonpan, Rad. Phys. Chem. 94, 199 (2014). https://doi.org/10.1016/j.radphyschem.2013.06.026

T. Rattanawongwiboon, K. Haema, and W. Pasanphan. Rad. Phys. Chem. 94, 205 (2014). https://doi.org/10.1016/j.radphyschem.2013.05.039

M. Abdel Aziz, H. Naguib, and G. Saad, Int. J. Polym. Mater. Po.64. 578 (2014). https://doi.org/10.1080/00914037.2014.996707

M. González Torres, S. Vargas Muñoz, S. Solís Rosales, M. Carreón Castro, R. Esparza Muñoz, R. Olayo González, M. Estévez González, and R. Rodríguez Talavera, Carbohyd. Polym. 133, 482 (2015). https://doi.org/10.1016/j.carbpol.2015.07.032

 

 

How to Cite
M. Caldera-Villalobos; B. Leal-Acevedo; V.M. Velázquez-Aguilar; M. D. P. Carreón-Castro. Graft-Copolymerization of Acrylate Monomers onto Chitosan Induced by Gamma Radiation: Amphiphilic Polymers and Their Behavior at The Air-Water Interface. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 209-215.

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...