Showing posts with label Polymer coatings. Show all posts
Showing posts with label Polymer coatings. Show all posts

Tuesday 8 September 2020

Graft-Copolymerization of Acrylate Monomers onto Chitosan Induced by Gamma Radiation: Amphiphilic Polymers and Their Behavior at The Air-Water Interface

 

  • M. Caldera-Villalobos
    Department of Radiation Chemistry and Radiochemistry, Institute of Nuclear Sciences, National Autonomous University of Mexico. Circuito Exterior, Ciudad Universitaria, 04510, Ciudad de México, México
  • B. Leal-Acevedo
    Radiation Safety and Radiation Unit, Institute of Nuclear Sciences, National Autonomous University of Mexico. Circuito Exterior, Ciudad Universitaria, 04510, Ciudad de México, México
  • V.M. Velázquez-Aguilar
    Faculty of Sciences, National Autonomous University of Mexico.. Ciudad Universitaria, 04510, Ciudad de México, México
  • M. D. P. Carreón-Castro
    Department of Radiation Chemistry and Radiochemistry, Institute of Nuclear Sciences, National Autonomous University of Mexico. Circuito Exterior, Ciudad Universitaria, 04510, Ciudad de México, México
Keywords: Ionizing radiation, Graft copolymer, Biobased polymers, Polymer coatings, LB films

Abstract

Graft polymerization induced by ionizing radiation is a powerful tool in materials science to modifying the physical properties of polymers. Chitosan is a biocompatible, biodegradable, antibacterial, and highly hydrophilic polysaccharide. In this work, we report the obtaining of amphiphilic polymers through graft polymerization of acrylic monomers (methyl acrylate, t-butyl acrylate, and hexyl acrylate) onto chitosan. The polymerization reaction was carried out by simultaneous irradiation of monomers and chitosan using a gamma radiation source of 60Co. The formation of Langmuir films of amphiphilic polymers was studied at the air-water interface through surface pressure versus main molecular area isotherms (Π-A) and hysteresis cycles of compression and decompression. Finally, it was analyzed the transferring of Langmuir films towards solid substrates to obtaining Langmuir-Blodgett films with potential application as an antibacterial coating. The microstructure of the Langmuir-Blodgett films was characterized by AFM microscopy observing a regular topography with roughness ranging between 0.53 and 0.6 μm.

References

A. Charlesby, in Proceedings of the Conference on Electrical Insulation & Dielectric Phenomena-Annual Report 1966, Pocono Manor, USA, edited by IEEE, 1966.

A. L. El Hadrami, I. El Hadrami, and F. Daayf, Mar. Drugs. 8, 968 (2010). https://doi.org/10.3390/md8040968

S. Ausar, I. Bianco, R. Badini, L. Castagna, N. Modesti, C. Landa, and D. Beltramo, J. Dairy Sci. 84, 361 (2001). https://doi.org/10.3168/jds.S0022-0302(01)74485-2

M. M. Rocha, M. Coimbra, and C. Nunes., Curr. Opin. Food Sci. 15, 61 (2017). https://doi.org/10.1016/j.cofs.2017.06.008

F. Gassara, C. Antzak, C. Ajila, S. Sarma, S. Brar, and M. Verma, J. Food Eng. 166, 80 (2015). https://doi.org/10.1016/j.jfoodeng.2015.05.028

H. Kurtbay, Z. Bekçi, M. Merdivan, and K. Yurdakoç, J. Agr. Food Chem. 56, 2541 (2008). https://doi.org/10.1063/1.5092422

O. Tastan, and T. Baysal, Food Chem. 237, 818 (2017). https://doi.org/10.1016/j.foodchem.2017.06.025

A. Martín Diana, D. Rico, J. Barat, and C. Barry, Ryan. Innov. Food Sci. Emerg. 10, 590 (2009). https://doi.org/10.1016/j.ifset.2009.05.003

O. Tastan, and T. Braysal, Food Chem. 180, 211 (2015). https://doi.org/10.1016/j.foodchem.2015.02.053

R. Castro Domingues, S. Braz Faria Junior, R. Berdardes Silva, V. Cardoso, and M. Hespanhol Miranda Reis, Process Biochem. 47, 467 (2012). https://doi.org/10.1016/j.procbio.2011.12.002

H. Liu, H. Li, W. Cheng, Y. Yang, and M. Z. C. Zhu, Acta Biomater. 2, 557 (2006). https://doi.org/10.1016/j.actbio.2006.03.007

H. Xu, and C. Simon, Jr. Biomaterials. 26, 1337 (2005). https://doi.org/10.1016/j.biomaterials.2004.04.043

Y. Sun, A. Chen, W. Sun, K. Shah, H. Zheng, and C. Zhu., Desalin. Water Treat. 148, 259 (2019). https://doi.org/10.5004/dwt.2019.23953

Y. Sun, M. Ren, W. Sun, X. Xiao, Y. Xu, H. W. H. Zheng, Z. Lui, and H. Zhu., Environ. Technol. 40, 954 (2017).https://doi.org/10.1080/09593330.2017.1414312

H. Harslan, U. Aytaç, T. Bilir, and S. Sen, Constr. Build. Mater. 204, 541 (2019). https://doi.org/10.1016/j.conbuildmat.2019.01.209

Lu. D., H. Wang, X. Wang, Y. Li, H. Guo, S. Sun, X. Zhao, Z. Yang, and Z. Lei, Carbohyd. Polym. 215, 20 (2019). https://doi.org/10.1016/j.carbpol.2019.03.065

A. Ibrahim, A. Saleh, E. Elsharma, E. Metwally, and T. Siyam, Int. J. Biol. Macromol. 121, 1287(2019). https://doi.org/10.1016/j.ijbiomac.2018.10.107

Y. Zhou, P. Dong, Y. Wei, J. Qian, and D. Hua, Colloid Surface B: Biointerfaces 132, 132(2015). https://doi.org/10.1016/j.colsurfb.2015.05.019

W. Pasaphan, T. Rattanawongwiboon, P. Rimdusit, and T. Piroonpan, Rad. Phys. Chem. 94, 199 (2014). https://doi.org/10.1016/j.radphyschem.2013.06.026

T. Rattanawongwiboon, K. Haema, and W. Pasanphan. Rad. Phys. Chem. 94, 205 (2014). https://doi.org/10.1016/j.radphyschem.2013.05.039

M. Abdel Aziz, H. Naguib, and G. Saad, Int. J. Polym. Mater. Po.64. 578 (2014). https://doi.org/10.1080/00914037.2014.996707

M. González Torres, S. Vargas Muñoz, S. Solís Rosales, M. Carreón Castro, R. Esparza Muñoz, R. Olayo González, M. Estévez González, and R. Rodríguez Talavera, Carbohyd. Polym. 133, 482 (2015). https://doi.org/10.1016/j.carbpol.2015.07.032

 

 

How to Cite
M. Caldera-Villalobos; B. Leal-Acevedo; V.M. Velázquez-Aguilar; M. D. P. Carreón-Castro. Graft-Copolymerization of Acrylate Monomers onto Chitosan Induced by Gamma Radiation: Amphiphilic Polymers and Their Behavior at The Air-Water Interface. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 209-215.

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...