Monday, 11 September 2017

Atomic Multiplet and Charge Transfer Effects in the Resonant Inelastic X-Ray Scattering (RIXS) Spectra at the Nickel L2,3 Edge of NiF2

J JIMÉNEZ-MIER,1,* P OLALDE-VELASCO,2 P DE LA MORA,3 W-L YANG,4 AND J DENLINGER4

1 Instituto de Ciencias Nucleares, UNAM, 04510 Ciudad de México, México
2 Instituto de Física, Benemérita Universidad Autónoma de Puebla, Puebla, A. Postal J-48 Puebla,         Puebla 72750, Mexico
3 Facultad de Ciencias, UNAM, 04510 Ciudad de México, México
4 The Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA

 *Email: jimenez@nucleares.unam.mx

Abstract Resonant inelastic x-ray scattering (RIXS) is used to study the electronic structure of NiF2 , which is the most ionic of the nickel compounds. RIXS can be viewed as a coherent two-steps process involving the absorption and the emission of x-rays. The soft x-ray absorption spectrum (XAS) at the metal L2,3 edge indicate the importance of atomic multiplet effects. RIXS spectra at L2,3 contain clearly defined emission peaks corresponding to d-excited states of Ni2+ at energies few eV below the elastic emission, which is strongly suppressed. These results are confirmed by atomic multiplet calculations using the Kramers-Heisenberg formula for RIXS processes. For larger energy losses, the emission spectra have a broad charge-transfer peak that results from the decay of hybridized Ni(3d)-F(2p) valence states. This is confirmed by comparison of the absorption and emission spectra recorded at the nickel L and fluorine K edges with F p and Ni d partial density of states using LDA + U calculations. Keywords: Core-level spectroscopies. RIXS, Nickel difluoride, Electronic structure

To read full paper please click here;
http://dspace.chitkara.edu.in/jspui/bitstream/1/861/1/51001_JNP_JIMENEZ.pdf

No comments:

Post a Comment

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...