Monday, 7 September 2020

Analysis of DDM into Gamma Radiation

 

  • C. Arellano-Celiz
    Faculty of Mathematical Physical Sciences, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 1152, Puebla, Pue.-72000, Mexico
  • A. Avilez-López
    Faculty of Mathematical Physical Sciences, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 1152, Puebla, Pue.-72000, Mexico
  • J. E. Barradas-Guevara
    Faculty of Mathematical Physical Sciences, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 1152, Puebla, Pue.-72000, Mexico
  • O. Félix-Beltrán
    Faculty of Electronics Sciences, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 542, Puebla, Pue.-72000, Mexico
  • F. González-Canales
    Faculty of Electronics Sciences, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 542, Puebla, Pue.-72000, Mexico
Keywords: Dark matter, Dipolar dark matter, WIMP, Relic density

Abstract

We are interested in the purpose of a dipolar fermionic particle as a viable candidate of Dark Matter (DDM). Then, we study the annihilation of dark matter into photons, considering it as a neutral particle with non-vanishing magnetic (M) and electric (D) dipolar moments. The total annihilation cross section σ(χchi bar → γgamma bar) is computed by starting from a general form of coupling χchi barγ in a framework beyond to Standard Model (BSM). We found that candidates with O(mχ )∽102GeV, D≈10−16 e cm are required in order to satisfy the current cosmic relic density.

 

References

F. Zwicky, Helv. Phys. Acta 6, 110–127 (1933).

V. C. Rubin, J. Burley, A. Kiasatpoor, B. Klock, G. Pease, E. Rutscheidt and C. Smith, Phys 67, 491 (1962). https://doi.org/10.1086/108758

N. Fornengo, Adv. Space Res. 41, 2010 (2008). https://doi.org/10.1016/j.asr.2007.02.067

G. Jungman, M. Kamionkowski, and K. Griest, Phys. Rept. 267, 195 (1996). https://doi.org/10.1016/0370-1573(95)00058-5

M. S. Turner, Phys. Rept. 197, 67 (1990). https://doi.org/10.1016/0370-1573(90)90172-X

G. D. Starkman, A. Gould, R. Esmailzadeh, and S. Dimopoulos, Phys. Rev. D 41, 3594 (1990). https://doi.org/10.1103/PhysRevD.41.3594

E. D. Carlson, M. E. Machacek, and L. J. Hall, The Astrophysical Journal 398, 43 (1992). https://doi.org/10.1086/171833

D. N. Spergel, and P. J. Steinhardt, Phys. Rev. Lett. 84, 3760 (2000). https://doi.org/10.1103/PhysRevLett.84.3760

A. Gould, B. T. Draine, R.W. Romani, and S. Nussinov, Phys. Lett. B 238, 337 (1990). https://doi.org/10.1016/0370-2693(90)91745-W

S. Davidson, S. Hannestad and G. Raffelt, JHEP 05, 003 (2000). https://doi.org/10.1088/1126-6708/2000/05/003

S. L. Dubovsky, D. S. Gorbunov, and G. I. Rubtsov, JETP Lett. 79, 1 (2004). https://doi.org/10.1134/1.1675909

J. H. Ho, Phys. Lett. B 693, 255 (2010). https://doi.org/10.1016/j.physletb.2010.08.035

E. Masso, S. Mohanty, Subhendra and S. Rao, Phys. Rev. D 80, 036009 (2009). https://doi.org/10.1103/PhysRevD.80.036009

S. Profumo, and K. Sigurdson, Phys. Rev. D 75, 023521 (2007). https://doi.org/10.1103/PhysRevD.75.023521

R. R. Caldwell, and M. Kamionkowski, Phys. Rev. D 70, 083501 (2004). https://doi.org/10.1103/PhysRevD.70.083501

N. Aghanim et al. (Planck Collaboration), arXiv:1807.06209 [astro-ph.CO] (2018).

J. H. Heo, Phys. Lett. B 702, 205 (2011). https://doi.org/10.1016/j.physletb.2011.06.088

E. Fermi, and E. Teller, Phys. Rev. 72, 399 (1947). https://doi.org/10.1103/PhysRev.72.399

K. Sigurdson, M. Doran, A. Kurylov, R. R. Caldwell, and M. Kamionkowski, Phys. Rev. D 70, 083501 (2004). https://doi.org/10.1103/PhysRevD.70.083501

N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, and N. Weiner, Phys. Rev. D 79, 015014 (2009). https://doi.org/10.1103/PhysRevD.79.015014

L.Bergström, Reports on Progress in Physics 63, 793 (2000). https://doi.org/10.1088/0034-4885/63/5/2r3

C. Arellano-Celiz, A. Avilez-López, J. E. Barradas-Guevara, and O. Félix-Beltrán, arXiv:1908.05695 [hep-ph].

M. Cannoni, Eur. Phys. J. C 76, 137 (2016), arXiv:1506.07475 [hep-ph]. 

 

 

How to Cite

C. Arellano-Celiz; A. Avilez-López; J. E. Barradas-Guevara; O. Félix-Beltrán; F. González-Canales. Analysis of DDM into Gamma Radiation. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 153-157.

No comments:

Post a Comment

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...