Showing posts with label Detectors. Show all posts
Showing posts with label Detectors. Show all posts

Monday 7 September 2020

Response to Neutrons and γ-rays of Two Liquid Scintillators

 

  • Hector Rene Vega-Carrillo
    Academic Unit of Nuclear Studies of the University Autonomous of Zacatecas, C. Cipres 10,Fracc. La Peñuela, 98060 Zacatecas, Zac. Mexico.
  • Martha Isabel Escalona-Llaguno
    Academic Unit of Nuclear Studies of the University Autonomous of Zacatecas, C. Cipres 10,Fracc. La Peñuela, 98060 Zacatecas, Zac. Mexico.
  • Luis Hernandez-Adame
    CONACyT - Center for Biological Research of the Northwest, S.C., Av. Instituto Politecnico Nacional 195, Col. Playa Palo de Santa Rita Sur 23090 La Paz, BCS. Mexico
  • Sergio M. Sarmiento-Rosales
    Academic Unit of Nuclear Studies of the University Autonomous of Zacatecas, C. Cipres 10,Fracc. La Peñuela, 98060 Zacatecas, Zac. Mexico.
  • Claudia A. Márquez-Mata
    Academic Unit of Nuclear Studies of the University Autonomous of Zacatecas, C. Cipres 10,Fracc. La Peñuela, 98060 Zacatecas, Zac. Mexico.
  • Guillermo E. Campillo-Rivera
    Academic Unit of Nuclear Studies of the University Autonomous of Zacatecas, C. Cipres 10,Fracc. La Peñuela, 98060 Zacatecas, Zac. Mexico.
  • V.P. Singh
    Karanatak University, Dharwad, Karnataka, India-580003
  • Teodoro Rivera-Montalvo
    Center for Research in Applied Science and Advanced Technology - Legaria Unit of IPN, Av. Legaria 694, Col. Irrigación, 11500 Ciudad de Mexico, Mexico
  • Segundo Agustin Martínez-Ovalle
    Pedagogical and Technological University of Colombia, Tunja, Colombia
Keywords: Response, Liquid Scintillator, Detectors, neutrons, Gamma Rays, UltimaGold, Optiphase

Abstract

UltimaGoldTM AB and OptiphaseTrisafe are two liquid scintillators made by Perkin Elmer and EG & G Company respectively. Both are commercially promoted as scintillation detectors for α and β particles. In this work, the responses to γ-rays and neutrons of UltimaGoldTM AB and OptiphaseTriSafe liquid scintillators, without and with reflector, have been measured aiming to use these scintillators as γ-rays and neutron detectors. Responses to γ-rays and neutrons were measured as pulse shape spectra in a multichannel analyzer. Scintillators were exposed to gamma rays produced by 137Cs, 54Mn, 22Na and 60Co sources. The response to neutrons was obtained with a 241AmBe neutron source that was measured to 25 and 50 cm from the scintillators. The pulse height spectra due to gamma rays are shifted to larger channels as the photon energy increases and these responses are different from the response due to neutrons. Thus, UltimaGoldTM AB and OptiphaseTrisafe can be used to detect γ-rays and neutrons.

 

References

V.A. Baskov and V.V. Polyansky, Bull. Lebedev Phys. Inst., 45, 123 (2018).

H.R. Vega-Carrillo, V.M. Hernández-Dávila, T. Rivera and A. Sánchez, Rad. Phys. Chem., 95, 122 (2014). https://doi.org/10.1016/j.radphyschem.2013.05.001.

J.C. McDonald, B.R.L. Siebert and W.G. Alberts, Nucl. Instrum. Meth. Phys. Res. A 476, 347 (2002). https://doi.org/10.1016/S01689002(01)01460-7.

G.F. Knoll, Radiation Detection and Measurement. (John Wiley & Sons, Michigan, 2010).

A.J. Peurrung, Nucl. Instrum. Meth. Phys. Res. A 443, 400 (2000).

https://doi.org/10.1016/S0168-9002(99)01165-1.

A.V. Zhirkin et al., Nucl. Fus., 57, 066044 (2017). https://doi.org/10.1088/1741-4326/aa69d4.

T. Nishitani et al., Fus. Eng. Des., 136, 210 (2018). https://doi.org/10.1016/j.fusengdes.2018.01.053.

T. Nishitani, K. Ogawa and M. Isobe, Fus. Eng. Des., 123, 1020 (2017). https://doi.org/10.1016/j.fusengdes.2017.02.038.

] L. Liu, A. Liu, S. Bai, L. Lv, P. Jin and X. Ouyang, Sci. Rep., 7, 13376 (2017). https://doi.org/10.1038/s41598-017-13715-3.

M.J. Devlin et al., Nucl. Data Sheets, 148, 322 (2018). https://doi.org/10.1016/j.nds.2018.02.008.

T. Zhu et al., Nucl. Instrum. Meth. Phys. Res. A 848, 137 (2017). https://doi.org/10.1016/j.nima.2016.12.016.

RV.D. Ryzhikov, S.V. Naydenov, T. Pochet, G.M. Onyshchenko, L.A. Piven and C.F. Smith, IEEE Trans. Nucl. Sci., 65, 2547 (2018). https://doi.org/10.1109/TNS.2018.2825642.

K.A. Guzmán-García, H.R. Vega-Carrillo, E. Gallego, J.A. González, R. Méndez,-Villafañe, A. Lorente and S. Ibañez-Fernandez, Rad. Meas., 107, 58 (2017). https://doi.org/10.1016/j.radmeas.2017.11.001.

K.A. Guzmán-García, H.R. Vega-Carrillo, E. Gallego, A. Lorente, R. Méndez-Villafañe J.A. González and S. Ibañez-Fernandez, Appl. Rad. Isot., 117, 58 (2016). https://doi.org/10.1016/j.apradiso.2016.03.015.

F. D´Errico, A. Chierici, M. Gattas-Sethi, R. Goldston and A. Glaser, Rad. Prot. Dosim., 180, 210 (2018). https://doi.org/10.1093/rpd/ncy037.

O.V. Hoey, F. Vanhavere and L. Verbraeken, Rad. Prot. Dosim., 180, 85 (2018). https://doi.org/10.1093/rpd/ncx224.

V. Gracanin et al., Rad. Meas., 106, 391 (2017). https://doi.org/10.1016/j.radmeas.2017.01.004.

F.D. Amaro, C.M.B. Monteiro, J.M.F. dos Santos and A. Antognini, Sci. Rep., 7, 41699 (2017). https://doi.org/10.1038/srep41699.

J.L. Tain et al., Acta Phys. Pol. B 49, 417 (2018). https://doi.org/10.5506/APhysPolB.49.417.

Miramonti, L., International Journal of Modern Physics A, 32, 1743010 (10 pages) (2017). https://doi.org/10.1142/S0217751X17430102.

P. Agnes et al., J. Instrum., 12, T12004 (2017). https://doi.org/10.1088/1748-0221/12/12/T12004.

I. Mor, D. Vartsky, V. Dangendorf, K. Tittelmeier, M.B. Goldberg, D. Bar and M. Brandis, J. Instrum., 12, C12022 (2017). https://doi.org/10.1016/j.nima.2018.02.113.

P. Roy, K. Banerjee, A.K. Saha, C. Bhattacharya, J.K. Meena, P. Bhaskar, S. Mukhopadhyay and S. Bhattacharya, Nucl. Instrum. Meth. Phys. Res. A 901, 198 (2018). https://doi.org/10.1016/j.nima.2018.06.007.

PL. Pujol and J.A. Sanchez-Cabeza, J. Radioanal. Nucl. Chem., 242, 391 (1999). https://doi.org/10.1007%2FBF02345568.

A. Srivastava, V. Tuli and U.W. Scherer, Radiochim. Acta, 106, 787 (2018). https://doi.org/10.1515/ract-2017-2848.

R. Broda, K. Małetka, T. Terlikowska and P. Cassette, Appl. Rad. Isot., 56, 285 (2002). https://doi.org/10.1016/S0969-8043(01)00202-0.

F. Verrezen, H. Loots and C. Hurtgen, Appl. Rad. Isot., 66, 1038 (2008). https://doi.org/10.1016/j.apradiso.2008.02.050.

S.P.D. Bhade, P.J. Reddy, S. Anilkumar, R.K. Singhal and D.D.J. Rao,. Radioanal. Nucl. Chem., 315, 13 (2018). https://doi.org/10.1007/s10967-017-5643-x.

H. Kafa, J.T.W. Wang, N. Rubio, K. Venner, G. Anderson, E. Pach, B. Ballesteros, J.E. Preston, N.J. Abbott and K.T. Al-Jamal, Biomaterials 53, 437 (2015). https://doi.org/10.1016/j.biomaterials.2015.02.083.

C.C. Wang, M. Seidaliev and A. Mandapaka, Health Phys., 94, 440 (2008). https://doi.org/10.1097/01.HP.0000300493.53385.5d.

F.D. Becchetti, R.S. Raymond, R.O. TorresIsea, A. Di Fulvio, S.D. Clarke, S.A. Pozzi and M. Febbraro, Nucl. Instrum. Meth. Phys. Res. A 820, 112 (2016). https://doi.org/10.1016/j.nima.2016.02.058

 

Issue
 
 
How to Cite
Hector Rene Vega-Carrillo; Martha Isabel Escalona-Llaguno; Luis Hernandez-Adame; Sergio M. Sarmiento-Rosales; Claudia A. Márquez-Mata; Guillermo E. Campillo-Rivera; V.P. Singh; Teodoro Rivera-Montalvo; Segundo Agustin Martínez-Ovalle. Response to Neutrons and γ-Rays of Two Liquid Scintillators. J. Nucl. Phy. Mat. Sci. Rad. A. 2019, 6, 171-178.
 

Saturday 16 September 2017

Measurements of Neutrons In A Mixed GammaNeutron Field Using Three Different Types of Detectors

B LEAL1 , F. CASTILLO2†, J GUTIERREZ1 , JI GOLZARRI3 , I GAMBOADEBUEN1 , G. ESPINOSA3 H MARTÍNEZ2

1 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510, Ciudad Universitaria, México D. F., México

2 Laboratorio de Espectroscopia, Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251, Cuernavaca Morelos, México

3 Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20- 364, 01000, Ciudad de México, México

Abstract A linear electron accelerator for medical use is a device for the treatment of tumors by collimated beams of electrons and/or photons. These accelerators are devices that employ electromagnetic waves of high frequency, to accelerate electrons that are used directly in the treatment of superficial tumors, or, if they are made to hit them on an appropriate target, they can produce photons of high energy destined to the treatment of deeptumors.Depending on the energy of the electrons and photons and the materials that make up the head of the accelerator and the target, this equipment will produce in addition to the aforementioned radiation, neutron fields of regular intensity. It is necessary to estimate the equivalent dose due to the neutrons themselves, the doses due to the gamma field of neutron capture, produced by the capture of thermal neutrons in the concrete of the bunker, and the gamma doses due to phenomena of neutron activation of elements of the own accelerator. It is therefore important to be able to measure (detect, quantify, dose, etc.) both photons and neutrons in these cases and others more. In this work we use three different detectors, namely a scintillator-photomultiplier system, a fast reading dosimeter and bubble detector. The idea is to measure the radiation separately and compare their results. The results obtained were the mixed gamma-neutron field spectrum, the dose due only to neutrons obtained by the bubble detectors, which is compared to the dose obtained by the second fast reading dosimeters (model 884), plus the dose obtained by the first dosimeters (model 609) and finally the dose obtained by the Victoreen dosimeter.

DOI: https://doi.org/10.15415/jnp.2017.51021

LINK: http://dspace.chitkara.edu.in/jspui/bitstream/1/881/1/51021_JNP_Castelo.pdf

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...