Abstract
A mini subcritical nuclear reactor was designed using Monte Carlo methods. The reactor has light water as moderator, natural uranium as fuel, and a 239PuBe neutron source. In the design uranium fuel was modeled in an arrangement of concentric rings: 8.5, 14.5, 20.5 26.5, 32.5 cm-inner radius, 3 cm-thick, and 36 cm-high. Different models were made from a single ring of natural uranium to five rings. For each case, the neutron spectra, the neutron fluence distribution, the effective multiplication factor, the amplification factor, and the reactor power were estimated. The ambient dose equivalent rate outside the mini reactor was also estimated. The maximum value for the keff (0.78) was obtained when five rings of fuel were used; this value is close to 0.86 which belongs to a Nuclear Chicago subcritical reactor which requires almost twice the amount of uranium than the mini subcritical reactor.
References
L. Geng, T. Liu, K. Zhou, G. Yang, G. Energy Policy, 113, 87 (2018).
O. Yue, J. He, S. Zhi, H. Dong, Annals Nuclear Energy, 111, 635 (2018).
S. Suman, Journal of Cleaner Production, 181, 166 (2018).
M. Abu-Khander, M. Marden, Progress in Nuclear Energy, 51, 225 (2009).
N. Nifenecker, S. David, J. Loiseaux, O. Meplan, Nuclear Instruments and Methods in Physics Research A, 463, 428 (2001).
F- Faghihia, S. Mirvakili, Nuclear Engineering and Design, 239, 1000 (2009).
H.R. Vega-Carrillo, I.R. Esparza-Garcia, A. Sanchez, Annals of Nuclear Energy, 75, 101 (2015).
M. Salvatores, I. Slessarev, V. Berthou, Progress in Nuclear Energy, 38, 167 (2001).
W.M. Schikorr, Nuclear Engineering and Design, 210, 95 (2001).
G. Stange, T. Mackie, M.A. Corradini, Journal of Radioanalytical and Nuclear Chemistry, 305, 23 (2015).
A. Nuttin, D. Heuer, A. Billebaud, R. Brissot, C. Le Brun, Progress in Nuclear Energy, 46, 77 (2005).
L.X. González-Puin, H.R. Vega-Carrillo, S.A. Martinez-Ovalle, Rev. Cien. Des. 4, 7 (2014).
S. Kamalpour, H. Khalafi, S.M. Mirvakili, Progress Nuclear Energy, 73, 107 (2014).
H.R. Vega-Carrillo, Teoría de Reactores Nucleares (Editorial Académica Española, Saarbrucken, Germany, 2012).
A. Lafuente, M. Piera, Annals of Nuclear Energy, 38, 910 (2011).
H.R. Vega-Carrillo, V.M. Hernández-Dávila, T. Rivera, A. Sánchez, Radiation Physics and Chemistry, 95, 122 (2014).
Y. Gohar, D.L. Smith, Report ANL-10/05, Argonne National Laboratory (2010).
S. Dawahra, K. Khattab, G. Saba, Annals of Nuclear Energy, 63, 594 (2014).
V. Gulik, V. A.H. Tkaczyk, Nuclear Engineering and Design, 270, 133 (2014).
X-5 Monte Carlo team, LA-UR-03-1987, Los Alamos National Laboratory (2003).
ICRP, Ann. ICRP, 26, 199 (1996).
P. Koseoglou, E. Vagena, S. Stoulos, M. Manolopoulou, Radiation Effects and Defects in Solids, 171, 766 (2016).
A. Asuncion-Astronomo, Z. Stancar, T. Goricanec, L. Snoj, Nuclear Engineering and Technology, 51, 2, pp. 337-344 (2019). https://doi.org/10.1016/j.net.2018.09.025.
M.I. Radaideh, I. Jarrah, S. Malkawi, A. Khateeb, I. Al-Issa, Progress in Nuclear Energy, 108, 43 (2018).
L.P. Tucker, S. Usman, A. Alajo, A. Nuclear Technology, 194, 97 (2016).