Showing posts with label Parton Distribution Function. Show all posts
Showing posts with label Parton Distribution Function. Show all posts

Monday, 6 August 2018

Dependence on the Identification of the Scale Energy Parameter Q 2 in the Quark Distribution Functions for a DIS Production of Za

 

  • M. Gómez-BockInstitute of Physics, Meritorious Autonomous University of Puebla (BUAP), PO Box J-48, 52570 Puebla, Mexico.
  • W. GonzalezInstitute of Physics, Meritorious Autonomous University of Puebla (BUAP), PO Box J-48, 52570 Puebla, Mexico.
  • L. López LozanoAcademic area of Mathematics and Physics. Hidalgo State Autonomous University. Kilometer 4.5 Pachuca-Tulancingo highway. 42184 Pachuca, Hidalgo. México.
  • S. Rosado-NavarroFaculty of Physical Mathematical Sciences, Meritorious Autonomous University of Puebla (BUAP), PO Box 1364, 72000 Puebla, Mexico.
  • A. RosadoInstitute of Physics, Meritorious Autonomous University of Puebla (BUAP), PO Box J-48, 52570 Puebla, Mexico.
Keywords: Bosonic Production, Deep inelastic scattering, Momentum Transferred, Parton Distribution Function, Parton Model

Abstract

We discuss the Z-production in a DIS (Deep Inelastic Scattering) process e + p → e + Z + X using the Parton Model, within the context of the Standard Model. In contrast with deep inelastic eP-scattering (e + p → e + X), where the choice of Q2, as the transferred momentum squared, is unambiguous; whereas in the case of boson production, the transferred momentum squared, at quark level, depends on the reaction mechanism (where is the EW interaction taking place). We suggest a proposal based on the kinematics of the process considered and the usual criterion for Q2, which leads to a simple and practical prescription to calculate Z-production via ep-DIS. We also introduce different options in order o perform the convolution of the Parton distribution functions (PDFs) and the scattering amplitude of the quark processes. Our aim in this work is to analyze and show how large could be the dependence of the total cross-section rates on different possible prescriptions used for the identification of the scale energy parameter Q2. We present results for the total cross-section as a function of the total energy √s of the system ep, in the range 300 <√s ≤ 1300 GeV.


References

C. Patrignani et al. (Particle Data Group), Chin Phys. C, 40, 100001 (2016). https://doi.org/10.1088/1674-1137/40/10/100001

S. L. Glashow, Nucl. Phys. 22, 579 (1961); S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967); A. Salam, Proc. 8th NOBEL Symposium, ed. N. Svartholm p.367, Almqvist and Wiksell, Stockholm, (1968). https://doi.org/10.1016/0029-5582(61)90469-2https://doi.org/10.1103/PhysRevLett.19.1264

J. D. Bjorken and E. A. Paschos, Phys. Rev. 185, 1875 (1969). https://doi.org/10.1103/PhysRev.185.1975

R. P. Feynman: Photon-hadron interactions, Reading: Benjamin (1972).

R. P. Feynman, Third International Conference at Stony Brook, N. Y. Gordon & Breach , pp 237–249 (1969).

J. Pumplin, D. R Stump, J. Huston, H. L. Lai, P. M. Nadolsky and W. K. Tung, JHEP 0207, 012 (2001).

D. Stump, J. Huston, J. Pumplin, W. K. Tung, H. L. Lai, S. Kuhlmann and J. F. Owens, JHEP 0310, 046 (2003).

M. Bohm and A. Rosado, Z. Phys. C 34, 117 (1987). https://doi.org/10.1007/BF01561123

E. Byckling and Kajantie: Particle hinematics, New York: Willey (1972).

C. H. Llewellyn-Smith and B. H. Wiik, DESY-77-38.

G. Altarelli, G. Martinelli, B. Mele and R. Ruckl, Nucl. Phys. B 262, 204 (1985). https://doi.org/10.1016/0550-3213(85)90284-6

P. Salati and J. C. Wallet, Z. Phys. C. 16, 155 (1982). https://doi.org/10.1007/BF01572266


Issue


How to Cite
M. Gómez-Bock; W. Gonzalez; L. López Lozano; S. Rosado-Navarro; A. Rosado. Dependence on the Identification of the Scale Energy Parameter Q 2 in the Quark Distribution Functions for a DIS Production of Za. J. Nucl. Phy. Mat. Sci. Rad. A. 20186, 27-32.

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...