REFERENCES |
- Cceres, L., et al.. Shells and shapes in the 44S nucleus. Acta Physica Polonica B 42, 3 (2011).
- Nobuo Hinohara et al.. Shape fluctuations in the ground and excited 0+ states of 30,32,34Mg. Phys. Rev. C 84, 061302(R) (2011).
- Wimmer, K., et al.. Discovery of the shape coexisting 0+ State in 32Mg by a two neutron transfer reaction. Phys. Rev. Lett. 105, 252501 (2010).
- Li, A., Zhou,X. R., and Sagawa ,H., Tensor force and shape evolution of Si isotopes in the Skyrme-Hartree-Fock model. Progr. Theor. Exp. Phys. 2013, 063D03 (2013).
- Davies, A. D., et al.. Probing Shell Structure and Shape Changes in Neutron-Rich Sulfur Isotopes through Transient-Field g-Factor Measurements on Fast Radioactive Beams of 38S and40S. Phys. Rev. Lett. 96, 112503 (2006).
- Saxena, G., Kumawat, M., Kaushik, M., Jain, S. K., and Mamta Aggarwal. Twoproton radioactivity with 2p halo in light mass nuclei A = 1834. Phys. Lett. B 775, 126 (2017).
- Saxena, G., Kumawat, M., Kaushik, M., Singh, U. K., Jain,S. K., Somorendro Singh, S., and Mamta Aggarwal. Implications of occupancy of 2s1/2 state in sd-shell within RMF+BCS approach. Int. J. Mod. Phys. E 26, 1750072 (2017).
- Lalazissis, G. A., Karatzikos, S., Fossion, R., Pena Arteaga, D., Afanasjev, A. V., and Ring, P.,The effective force NL3 revisited. Phys. Lett. B 671, 36 (2009).
- Mamta Aggarwal. Proton radioactivity at non-collective prolate shape in high spin state of 94Ag. Phys. Lett. B 693, 489 (2010).
- Mamta Aggarwal. Coexisting shapes with rapid transitions in odd-Z rare-earth proton emitters. Phys. Rev. C 89, 024325 (2014).
- Lalazissis, G. A., Vretenar, D., and Ring,P., Relativistic Hartree-Bogoliubov description of sizes and shapes of A=20 isobars. Phys. Rev. C 63, 034305 (2001).
- Singh, D., Saxena, G., Kaushik, M., Yadav, H. L., and Toki, H., Study of twoproton radioactivity within the relativstic mean-field plus bcs approach. Int. J. Mod. Phys. E 21, 1250076 (2012).
- Sugahara, Y., and Toki, H., Relativistic Mean-Field Theory for Unstable Nuclei with Non-Linear σ and (Omega) terms. Nucl. Phys. A 579, 557 (1994).
- Yadav, H. L., Kaushik, M., and Toki, H., Description of drip-line nuclei within the Relativistic Mean-Field plus BCS Aproach. Int. J. Mod. Phys. E 13, 647 (2004).
- Geng, L. S., Toki, H., Sugimoto, S., and Meng, J., Relativistic mean field theory for deformed nuclei with pairing correlations. Prog. Theor. Phys. 110, 921 (2003).
- Gambhir,Y. K., Ring, P., and Thimet, A., Relativistic mean field theory for finite nuclei. Annals Phys. 198, 132 (1990).
- Flocard, H., Quentin, P., Kerman, A. K., and Vautherin, D., Nuclear deformation energy curves with the constrained Hartree-Fock method. Nucl. Phys. A 203, 433 (1973).
- Geng,L. S., Toki, H., Ozawa, A., and Meng, J., Proton and neutron skins of light nuclei within the relativistic mean field theory Nucl. Phys. A 730, 80 (2004).
- Ring,P.,Relativistic mean field theory in finite nuclei. Prog. Part. Nucl. Phys. 37, 193 (1996).
- Saxena, G., Singh, D., Kaushik, M., and Singh,S. S., RMF+ BCS approach for drip-line isotopes of Si., Canadian Journal of Physics 92, 253 (2014).
- Saxena, G., and Singh, D., Study of neutron magic drip-line nuclei within relativistic mean-field plus BCS Approach. Int. J. Mod. Phys. E 22, 1350025 (2013).
- Dobaczewski, J., Flocard, H., and Treiner, J., Hartree-Fock-Bogolyubov description of nuclei near the neutron-drip line. Nucl. Phys. A 422, 103 (1984).
|