Abstract
Laser interaction with the gas phase nucleobase adenine is studied. A linear TOF mass spectrometer is utilized for measurements that require high mass resolution, high sensitivity, and sufficient ion yields of low mass fragment cations. The ion mass spectra are discussed at different laser energy intensities and two temperatures. In contrast to previous studies a number light ion is present in the mass spectra. The ion formation curves for 23 different ions are measured for the laser energy range from about 109 to 1010 W cm–2 and masses between 1 and 43 besides mass 57 which was present in the mass spectra and will be discuss. Data were taken heating the sample at 235 Co. The number of 355nm absorbed photons was calculated accordingly to Keldysh theory and similar results were found using adenine -Ar mixture. Our results are compared with those reported formed by protons, electrons or multiple charged ions interactions. Different ions were found indicating the possible effect of multiphoton absorption.
References
A. Shimoyama, S. Hagishita, K. Harada, Geochemical Journal, 343–348. (1990). https://doi.org/10.2343/geochemj.24.343
S. A. Passaglia et al, Free Radical Biology and Medicine 107, 110–124 (2017). https://doi.org/10.1016/j.freeradbiomed.2017.01.029
L. B. Clark, G. G. Peschel, and I. Tinoco, Journal of Physical Chemistry, 69, 3615–3618(1965). https://doi.org/10.1021/j100894a063
N. J. Kim et al., The Journal of Chemical Physics 113, 10051 (2000). https://doi.org/10.1063/1.1322072
J. Stepanek and V. Baumruk, Journal of Molecular Structure. 219, 299–304 (1990). https://doi.org/10.1016/0022-2860(90)80072-R
A. Conconi, & B. Bell, The long and short of a DNAdamage response, Molecular biology doi:10.1038/ nature22 488(2017).
E. A. Kuzicheva, M. B. Simakov, Advances in Space Research 23, 391, (1999).
G. F. Joyce, Nature 418, 214–221(2002). https://doi.org/10.1038/418214a
J. de Vries, R. Hoekstra, R. Morgenstern, T. Schlatholter, Physical Review Letters 91, 053401(2003). https://doi.org/10.1103/PhysRevLett.91.053401
T. Schlatholter et al., Physical Review Letters 94.233001 (2005).
H. I. Nikjoo, D. E. Charlton, D. T. Goodhead, Advances in Space Research 14, 161–180 (1994). https://doi.org/10.1016/0273-1177(94)90466-9
J. M. Riceand, G. O. Dudek, Journal of the American Chemical Society, 89, 2719–2725 (1967). https://doi.org/10.1021/ja00987a039
J. Tabet et al., Physical Review A 82, 022703 (2010). https://doi.org/10.1103/PhysRevA.82.022703
J. Tabet et al., International Journal of Mass Spectrometry. 292, 53 (2010). https://doi.org/10.1016/j.ijms.2010.03.002
H. W. Jochims, M. Schwell, H. Baumgärtel, S. Leach, Chemical Physics, 314, 263–282 (2005). https://doi.org/10.1016/j.chemphys.2005.03.008
V. V. Afrosimov et al., Technical Physics 57, 594–602 (2012). https://doi.org/10.1134/S1063784212050027
S. Martin et al., Physical Review A, 77.062513 (2008). https://doi.org/10.1103/PhysRevA.77.062513
T. Cunha et al., The Journal of Chemical Physics 148, 134301 (2018). https://doi.org/10.1063/1.5021888
L. V. Keldysh, Soviet Physics JETP 20 (5), 1307–1314 (1965).
J. C. Poveda, I. Álvarez, A. Guerrero-Tapia, C. Cisneros, Revista Mexicana de Física 62, 206–212 (2016).
M. J. DeWitt, and R. J. Levis, The Journal of Chemical Physics 110, 11368 (1999). https://doi.org/10.1063/1.479077
S. K. Sethi et al., American Chemical 104, 3349–3353, (1982). https://doi.org/10.1021/ja00376a017