Showing posts with label green fluorescent protein; bacterial systems; bacterial temperature; spectroscopic properties. Show all posts
Showing posts with label green fluorescent protein; bacterial systems; bacterial temperature; spectroscopic properties. Show all posts

Wednesday 28 June 2017

Using Green Fluorescent Protein to Correlate Temperature and Fluorescence Intensity into Bacterial Systems

DOI
10.15415/jnp.2016.41005

AUTHORS

K. Beltrán, J. M. de Jesús-Miranda, J. A. Castro, L. A. Mandujano-Rosas, J. M. Paulin-Fuentes, D. Osorio-González

ABSTRACT

The unique and stunning spectroscopic properties of Green Fluorescent Protein (GFP) from the jellyfish Aequorea victoria, not to mention of its remarkable structural stability, have made it one of the most widely studied and used molecular tool in medicine, biochemistry, and cell biology. Its high fluorescent quantum yield is due to its chromophore, structure responsible of emitting green visible light when excited at 395 nm. Although it is noteworthy that there is enormous available information of the wonderful luminescent properties of GFP, the fact is that there are features and properties unexplored yet, particulary about its capabilities as molecular reporter in several biological processes. In this work, we used recombinant DNA technology to express the protein in bacteria; prepared the bacterial system both in liquid and solid media, and assembled an experimental set to expose those media to a laser beam; thereby we excited the protein chromophore and used emission spectroscopy in order to observe variations in fluorescence when the bacterial system is exposed to different temperatures.

KEYWORDS

green fluorescent protein; bacterial systems; bacterial temperature; spectroscopic properties

REFERENCES

  • Baker, M. Microscopy: Bright light, better labels. Technology feature. Nature. 478: 137-142. (2011). http://dx.doi.org/10.1038/478137a
  • Blow, N. Cell imaging: New ways to see a smaller world. Nature. 456: 825-828. (2008). http://dx.doi.org/10.1038/456825a
  • Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Green Fluorescent Protein as a Marker for Gene Expression. Science. 263(5148): 802-805. (1994). http://dx.doi.org/10.1126/science.8303295
  • Donner, J., Thompson, S., Kreuzer, M., Baffou, G. & Quidant, R. Mapping intracellular temper-ature using green fluorescent protein. Nano Letters. 12(4): 2107-2111. (2012). http://dx.doi.org/10.1021/nl300389y
  • Hernández, C.M. Caracterización funcional y ensamblaje membranal del canal de potasio shaker H4, y de segmentos truncados en la porción amino o carboxilo. Tesis de maestría. Un-iversidad de Colima, (2001).
  • Knop, M. & Edgar, B. A. Tracking protein turnover and degradation by microscopy: photo-switchable versus time-enconded fluorescent proteins. Open biology, (2014). doi:10.1098/rsob.140002 http://dx.doi.org/10.1098/rsob.140002
  • Prasher, D. C., Eckenrode, V. K., Ward, W. W., Pendergast, F. G. & Cormier, M. J. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111(2): 229-233. (1992). http://dx.doi.org/10.1016/0378-1119(92)90691-H
  • Tsien, R. Y. The green fluorescent protein. Annu Rev. Biochem. 67: 509-544. (1998). http://dx.doi.org/10.1146/annurev.biochem.67.1.509
  • Wang, S. & Hazelrigg, T. Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature. 369(6479): 400-403. (1994). http://dx.doi.org/10.1038/369400a0
  • Zhang C, Liu M. S. & Xing X. H. Temperature Influence on Fluorescence Intensity and En-zyme Activity of the Fusion Protein of GFP and Hyperthermophilic Xylanase. Appl. Microbiol. Biotechnol. 84(3): 511-517. (2009). http://dx.doi.org/10.1007/s00253-009-2006-8

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...