Monday, 7 September 2020

Stability of Pyruvic Acid Adsorbed Onto Clays and Exposed to Ionizing Radiation: Relevance in Chemical Evolution

 

  • R. C Acosta-Fernández
    Institute of Nuclear Sciences (ICN), National Autonomous University of Mexico (UNAM); Faculty of Chemistry, UNAM
  • A. Heredia-Barbero
    Institute of Nuclear Sciences (ICN), National Autonomous University of Mexico (UNAM)
  • A. Negrón-Mendoza
    Institute of Nuclear Sciences (ICN), National Autonomous University of Mexico (UNAM)
Keywords: Chemical evolution, Pyruvic acid, Clays, Gamma radiation

Abstract

Chemical evolution studies focus on the synthesis and stability of organic molecules during various transformative physicochemical processes. Gaining insight into the possible mechanisms behind these processes requires the use of various energy sources and catalysts that can produce such transformations. In this work, ionizing radiation (60Co) was used as a source of energy, and two clays with different exchangeable cations-sodium and iron (III)-were combined with pyruvic acid, a key alpha keto acid in metabolism. The samples of pyruvic acid were prepared at a concentration of 0.01 M; then, adsorption experiments were carried out by combining sodium or iron montmorillonite at different times. The amount that adsorbed onto iron montmorillonite was greater than the amount that adsorbed onto sodium montmorillonite. Samples of alpha keto acid at the same concentration were irradiated-in the absence of clay-at 0 to 146.1 kGy and at two pHs (6.7 and 2.0). The suspended samples with sodium and iron clay were then irradiated at the same doses. The results show that keto acid decomposes more quickly at more acidic pHs. The main reaction to irradiation without clay involves the dimerization of pyruvic acid, and 2,3-dimethyltartaric acid is the majority product. When irradiated in the presence of clay, the main reaction is decarboxylation, and acetic acid is the majority product. The exchangeable cation type modifies the interactions between the organic molecule and the solid phase. The percentage of recovered pyruvic acid is higher for iron montmorillonite than for sodium montmorillonite.

 

References

E. C. Griffith, R. K. Shoemaker, and V. Vaida. Orig. Life Evol. Biospheres. 43, 341 (2013). https://doi.org/10.1007/s11084-013-9349-y

G. Albarrán, A. Negrón-Mendoza, C. Treviño, and J.L. Torres, Int. J. Radiat. Appl. Instrum. Part C Radiat. Phys. Chem. 31, 821 (1988). https://doi.org/10.1016/1359-0197(88)90263-9

G. D. Cody, N. Z. Boctor, T. R. Filley, R. M. Hazen, J. H. Scott, A. Sharma, H.S. Yoder Jr, Science. 289, 1337 (2000). https://doi.org/10.1126/science.289.5483.1337

R. Saladino, G. Botta, M. Delfino, and E. Di Mauro, J. Chem. Eur. 19, 16916 (2013). https://doi.org/10.1002/chem.201303690

G. Cooper, C. Reed, D. Nguyen, M. Carter, and Y. Wang, Proc. Natl. Acad. Sci. 108, 14015 (2011). https://doi.org/10.1073/pnas.1105715108

R. M. Hazen, and D. W. Deamer, Orig. Life Evol. Biospheres. 37, 143 (2007). https://doi.org/10.1007/s11084-006-9027-4.

J. Ramírez-Carreón, S. Ramos-Bernal, and A. Negrón-Mendoza, J. Radioanal. Nucl. Chem. 318, 2435 (2018). https://doi.org/10.1007/s10967-018-6264-8

M. Rao, D. G. Odom, and J. Oró, J. Mol. Evol. 15, 317 (1980). https://doi.org/10.1007/BF01733138

Z. Gerstl, and A. Banin, Clays and clay Minerals 28, 335 (1980). https://doi.org/10.1346/CCMN.1980.0280503

I. Draganic and Z. D. Draganic. The Radiation Chemistry of Water (Elsevier Science, Saint Louis 2014).

 

How to Cite
R. C Acosta-Fernández; A. Heredia-Barbero; A. Negrón-Mendoza. Stability of Pyruvic Acid Adsorbed Onto Clays and Exposed to Ionizing Radiation: Relevance in Chemical Evolution. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 97-101.

 

Analysis of Indoor Radon Distribution Within a Room By Means of Computational Fluid Dynamics (CFD) Simulation

 

  • A. Lima Flores
    Faculty of Physical Mathematical Sciences, Meritorious Autonomous University of Puebla (BUAP), San Claudio Avenue and 18th south street, Puebla-72570, Mexico
  • R. Palomino-Merino
    Faculty of Physical Mathematical Sciences, Meritorious Autonomous University of Puebla (BUAP), San Claudio Avenue and 18th south street, Puebla-72570, Mexico
  • V.M. Castano
    Center for Applied Physics and Advanced Technology, National Autonomous University of Mexico, Juriquilla Boulevard number 3001, 76230 Santiago De Querétaro, Querétaro, Mexico
  • G. Espinosa
    Institute of Physics, National Autonomous University of Mexico (UNAM), 04520 Mexico City, Mexico
Keywords: Radiological Protection, Radon-222 Distribution, Computational Fluid Dynamics (CFD)

Abstract

Radon gas is recognized by international organizations such as the United States Environmental Protection Agency (US-EPA) as the main contributor of radiation environmental to which human beings are exposed. Therefore, the evaluation of indoor radon concentration is a matter of public interest. The emanation and the income of the gas inside a room will generate a negative impact on the quality of the air when the place is not properly ventilated. Understanding how this gas will be distributed inside the room will allow to predict the spatial and temporal variations of radon levels and identify these parameters will provide important information that researchers can be used for calculate radiation dose exposure. Consequently, this studies can prevent a health risk for the people that live or work within the room. Currently, several researchers use the technique called Computational Fluid Dynamics (CFD) to simulate the distribution of gas radon, making use of the various commercial programs that exist in the market. In this work, three simulations were developed in rooms that have a similar geometry but different dimensions, in order to observe how the gas is distributed inside a closed space and to analyze how this distribution varies when the volume of the place is increased. The results show that as the volume of the site increases the radon is mitigated more rapidly and therefore has lower levels of concentration of this gas, as long as the level of radon emanation is kept constant.

 

References

W. Dyck, Handbook of Exploration Geochemistry (Elsevier Science Ltd, The Netherlands, 2000), Vol. 7, Chap. 11, p. 353.

C.R. Cothern, Environmental Radon (Springer Science + Business Media, LLC, New York, 1987), Chap. 4, p. 81.

M. Al-Zoughool and D. Krewski, Int. J. Radiat. Biol. 85, 57 (2009). https://doi.org/10.1080/09553000802635054

A. Lima Flores, R. Palomino-Merino, E. Espinosa, V.M. Castaño, E. Merlo Juarez, M. Cruz Sánchez, and G. Espinosa, J. Nucl. Phy. Mat. Sci. Rad. A 4, 325 (2016). https://doi.org/10.15415/jnp.2016.41008

G. Espinosa and R.B. Gammage, Appl. Radiat. lsot. 44, 719 (1993). https://doi.org/10.1016/0969-8043(93)90138-Z

G. Espinosa, L. Manzanilla and R.B. Gammage, Radiat. Meas. 28, 667 (1997). https://doi.org/10.1016/S1350-4487(97)00161-3

C. Lee and D. Lee, Ann of Occup. and Environ Med. 28, 14 (2016). https://doi.org/10.1186/s40557-016-0097-0

G. Espinosa, J.I. Golzarri, A. Chavarria, and V.M. Castaño, Radiat. Meas. 50, 127 (2013). https://doi.org/10.1016/j.radmeas.2012.09.010

A. Lima Flores, R. Palomino-Merino, E.Moreno-Barbosa, J.N. Domínguez-Kondo, V.M. Castaño, A.C. Chavarría Sánchez, J.I. Golzarri, and G. Espinosa, J. Nucl. Phy. Mat. Sci. Rad. A 6, 61 (2018). https://doi.org/10.15415/jnp.2018.61010

United States Environmental Protection Agency, https://www.epa.gov/radiation/what-radon-gas-it-dangerous

G. Espinosa, Trazas Nucleares en Sólidos (Universidad Nacional Autónoma de México, Distrito Federal, 1994).

N. Chauhan, R.P. Chauhan, M. Joshi, T.K. Agarwal, P. Aggarwal, and B.K. Sahoo, J. Environ. Radioact. 136, 105 (2014). https://doi.org/10.1016/j.jenvrad.2014.05.020

J. Chen, N.M. Rahman, and I. Abu-Atiya, J. Environ. Radioact. 101, 317 (2010). https://doi.org/10.1016/j.jenvrad.2010.01.005

G. Keller, B. Hoffmann, and T. Feigenspan, Sci. Total Environ. 272, 85 (2001). https://doi.org/10.1016/s0048-9697(01)00669-6

A. Kumar, R.P. Chauhan, M, Joshi, and B.K. Sahoo, J. Environ. Radioact. 127, 50 (2014). https://doi.org/10.1016/j.jenvrad.2013.10.004

B.P. Jelle, K. Noreng, T.H. Erichsen and T. Strand, J. Build. Phys. 34, 195 (2011). https://doi.org/10.1177/1744259109358285

K. Akbari, J. Mahmoudi, and M. Ghanbari, J. Environ. Radioact. 116, 166 (2013). https://doi.org/10.1016/j.jenvrad.2012.08.013

V. Urosevic, D. Nikezic, and S. Vulovic, J. Environ. Radioact. 99, 1829 (2008). https://doi.org/10.1016/j.jenvrad.2008.07.010

W. Zhuo, T. Iida, J. Morizumi, T. Aoyagi, and I. Takahashi, Radiat. Prot. Dosim. 93, 357 (2001). https://doi.org/10.1093/oxfordjournals.rpd.a006448

C.E. Andersen, Sci. Total Environ. 272, 33 (2001). https://doi.org/10.1016/S0048-9697(01)00662-3

 

 

How to Cite

A. Lima Flores; R. Palomino-Merino; V.M. Castano; G. Espinosa. Analysis of Indoor Radon Distribution Within a Room By Means of Computational Fluid Dynamics (CFD) Simulation. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 89-95.

Stability of Glycine in Saline Solutions Exposed to Ionizing Radiation

 

  • Laura Patricia Cruz-Cruz
    Sciences Faculty, National Autonomous University of Mexico (UNAM), Mexico City-04520, Mexico
  • Alicia Negrón-Mendoza
    Department of Radiation Chemistry and Radio chemistry, Institute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), Mexico City-04520, Mexico
  • Alejandro Heredia-Barbero
    Department of Radiation Chemistry and Radio chemistry, Institute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), Mexico City-04520, Mexico
Keywords: Chemical evolution, Glycine, Saline water, Ionizing radiation

Abstract

The stability of biologically important molecules, such as amino acids, being subjected to high radiation fields is relevant for chemical evolution studies. Bodies of water were very important in the primitive Earth. In these bodies, the presence of dissolved salts, together with organic molecules, could influence the behavior of the systems in prebiotic environments.
The objective of this work is to examine the influence of sodium chloride on the stability of the amino acid glycine when subjected to high radiation doses. The analysis of the irradiated samples was followed by HPLC coupled with a UV-VIS detector. The results show that glycine in aqueous solutions (without oxygen) decomposed around 90% at a dose of 91 kGy. In the presence of salts, up to 80% of the amino acid was recovered at the same dose. Laboratory simulations demonstrate a protective role for sodium chloride (specifically the chloride ion) to glycine against an external source of ionizing radiation.


References

A. Negrón-Mendoza and G. Albarran. Chemical Evolution. Origin of life, 147–235 (1993).

J. Cruz-Castañeda, A. Negrón-Mendoza, D. Frías, M. Colín-García, A. Heredia, S. Ramos-Bernal and S. Villafañe-Barajas, J Radioanal Nucl. Chem. 304, 219–225 (2015). https://doi.org/10.1007/s10967-014-3711-z

Garzón, L., and M. L. Garzón, Origins of Life and Evolution of the Biosphere 31, 3 (2001). https://doi.org/10.1023/A:1006664230212

J. W. T. Spinks and R. J. Woods, Introduction to Radiation Chemistry. (John Wiley and Sons, Inc., New York, 1990).

S. J. Mojzsis, T. M. Harrison and R. T. Pidgeon, Nature 409, 178 (2001). https://doi.org/10.1038/35051557

W. H. Peck, J. W. Valley, S. A. Wilde and C. M. Graham, Geochimica et Cosmochimica Acta 65, 4215 (2001). https://doi.org/10.1016/S0016-7037(01)00711-6

R. F. Weiss, Deep Sea Research and Oceanographic Abstracts 17, 721 (1970). https://doi.org/10.1016/0011-7471(70)90037-9

S. A. Hassan, J Phys Chem B 109, 21989 (2005). https://doi.org/10.1021/jp054042r

D. A. M. Zaia, C. T. B. V. Zaia and H. De Santana, Origins of Life and Evolution of Biospheres 38, 469 (2008). https://doi.org/10.1007/s11084-008-9150-5

 

How to Cite

Laura Patricia Cruz-Cruz; Alicia Negrón-Mendoza; Alejandro Heredia-Barbero. Stability of Glycine in Saline Solutions Exposed to Ionizing Radiation. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 83-87.

 

Spectrophotometric Study of Polymeric DyesGels After a Gamma Irradiation Process for its Possible Use as a Radiation Dosimeter

 

  • A L Meléndez-López
    Institute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico; Institute of Geology, National Autonomous University of Mexico (UNAM), ), PO Box 70-543, 04510 Mexico City, Mexico
  • M F García-Hurtado
    Faculty of Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico
  • J Cruz-Castañeda
    Institute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico
  • A Negrón-Mendoza
    Institute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico
  • S Ramos-Bernal
    Institute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico
  • A Heredia
    Institute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico
Keywords: Polymeric dyes gels, Linearity dose -response, Gamma radiation

Abstract

This work aims to evaluate a dosimetric system composed of green malachite supported in agarose. Previous work showed that solutions of green malachite irradiated at 1 to 40 kGy present a linear behavior. This system is a gel composed of green malachite (2.5×10–3 M), sodium benzoate (1%),
and agarose (1%) that was exposed tovarious doses of gamma irradiation. The irradiated systems were measured with a UV-V is spectrophotometer at 619 nm. Experimental parameters (such as dose rate, doses, and temperature) were controlled and optimized for reproducible and reliable results. More studies are needed to propose a dosimeter in the system in the range of 1.8 to 4.0 kGy.

 

References

S. Chu, A. Wieser, H. Feist, and D. F. Regulla, Int. J. Radiat. Appl. Instrumentation. Part A. Appl. Radiat. Isot. 40, 993 (1989). https://doi.org/10.1016/0883-2889(89)90030-0

A. Meléndez-López, A. Negrón-Mendoza, V. Gómez-Vidales, R. M. Uribe, and S. Ramos-Bernal, Radiat. Phys. Chem. 104, 230 (2014). https://doi.org/10.1016/j.radphyschem.2014.03.012

A. Niroomand‐Rad, C.R. Blackwell, B.M. Coursey, K.P. Gall, J.M. Galvin, W.L. McLaughlin, A.S. Meigooni, R. Nath, J.E. Rodgers and CG. Soares, Med. Phys. 25, 2093 (1998). https://doi.org/10.1118/1.598407

A. J. Swallow and A. Charlesby, Radiation Chemistry of Organic Compounds: International Series of Monographs on Radiation Effects in Materials. (Elsevier Science, 1960).

M. J. Day and G. Stein, Nature 166, 146 (1950). https://doi.org/10.1038/166146a0

C. Baldock, Y. De Deene, S. Doran, G. Ibbott, A. Jirasek, M. Lepage, K. B. McAuley, M. Oldham, and L. J. Schreiner, Phys. Med. Biol. 55, R1 (2010). https://doi.org/10.1088/0031-9155/55/5/R01

J. W. T. Spinks and R. J. Woods, An Introduction to Radiation Chemistry (Wiley, 1990).

 

 

How to Cite
A L Meléndez-López; M F García-Hurtado; J Cruz-Castañeda; A Negrón-Mendoza; S Ramos-Bernal; A Heredia. Spectrophotometric Study of Polymeric DyesGels After a Gamma Irradiation Process for Its Possible Use As a Radiation Dosimeter. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 77-81.

 

How do Uncertainties in Atomic Parameters Influence Theoretical Predictions of X-Ray Production Cross Sections By Proton Impact?

 

  • J Miranda
    Institute of Physics, National Autonomous University of Mexico, Scientific Research Circuit S/N, Coyoacan-04510, Mexico
Keywords: Ionization, X-ray production, Protons, Fluorescence yield, Coster-Kronig, Uncertainties

Abstract

The emission of characteristic X-rays induced by proton impact is a phenomenon known since the first half of the 20th century. Its more widely known application is the analytical technique Particle Induced X-ray Emission (PIXE). Several models have been developed to calculate, first, ionization cross sections and then the subsequent X-ray production cross sections. However, to carry out the comparisons of these predictions with experimental data it is necessary to use atomic parameters databases (fluorescence yields, Coster-Kronig transition probabilities, emission rates) that also have experimental uncertainties. In this work it is demonstrated how these values do not allow to decide which model describes more accurately the cross sections, due to a final “theoretical uncertainty” obtained through the propagation of the original uncertainties.

 

References

S. A. E. Johansson and J. L. Campbell, PIXE: A Novel Technique for Elemental Analysis (John Wiley, Chichester, 1988).

G. Lapicki, Nucl. Instrum. Meth. B 189, 8 (2002). https://doi.org/10.1016/S0168-583X(01)00987-9

H. Paul and J. Sacher, At. Data Nucl. Data Tables 42, 105(1989). https://doi.org/10.1016/0092-640X(89)90033-8

A. Kahoul, B. Deghfel, A. Abdellatif and M. Nekkab, Rad. Phys. Chem. 80, 1300 (2011). https://doi.org/10.1016/j.radphyschem.2011.06.016

J. Miranda and G. Lapicki, At. Data Nucl. Data Tables 100, 651(2014). https://doi.org/10.1016/j.adt.2013.07.003

J. Miranda and G. Lapicki, At. Data Nucl. Data Tables 118, 444 (2018).

L. C. Phinney, J. L. Duggan, G. Lapicki, F. U. Naab, K. Hossain, and F. D. McDaniel J. Phys. B 42, 085202 (2009). https://doi.org/10.1088/0953-4075/42/8/085202

E. Merzbacher and H.W. Lewis, Handbuch der Physik (Springer, Berlin, 1958) p.166.

J. H. McGuire and P. Richard, Phys. Rev. A 8, 1374 (1973). https://doi.org/10.1103/PhysRevA.8.1374

W. Brandt and G. Lapicki, Phys. Rev. A 23, 1717 (1981). https://doi.org/10.1103/PhysRevA.23.1717

C. C. Montanari, J. N. Miraglia and N. R. Arista, Phys. Rev. A 66, 042902 (2002). https://doi.org/10.1103/PhysRevA.66.042902

G. Schiwietz, K. Czerski, M. Roth, F. Staufenbiel, and P.L. Grande, Nucl. Instrum. Meth. B 225, 4 (2004). https://doi.org/10.1016/j.nimb.2004.05.041

L. Sarkadi and T. Mukoyama, Nucl. Instrum. Meth. B 61, 167(1991). https://doi.org/10.1016/0168-583X(91)95456-N

G. Lapicki and F. D. McDaniel, Phys. Rev. A 22, 1896 (1980). https://doi.org/10.1103/PhysRevA.22.1896

G. Lapicki, R. Mehta, J. L. Duggan, P. M. Kocur, J. L. Price, and F. D. McDaniel, Phys. Rev. A 34, 3813 (1986). https://doi.org/10.1103/PhysRevA.34.3813

J. L. Campbell, At. Data Nucl. Data Tables 85, 291 (2003). https://doi.org/10.1016/S0092-640X(03)00059-7

W. Maenhaut and K. G. Malmqvist, Handbook of X-Ray Spectrometry, edited by R. E. Van Grieken and A. A. Markowicz, p. 719 (Marcel Dekker, New York, 2002).

S. J. Cipolla, Comp. Phys. Comm. 182, 2439 (2011). https://doi.org/10.1016/j.cpc.2011.06.004

G. Lapicki, J. Phys. B 41, 115201 (2008). https://doi.org/10.1088/0953-4075/41/11/115201

M.O. Krause, J. Phys. Chem. Ref. Data 8, 307(1979). https://doi.org/10.1063/1.555594

A. Kahoul, V. Aylikci, N. KupAylikci, E. Cengiz, and G. Apaydin, Rad. Phys. Chem. 81, 713 (2012). https://doi.org/10.1016/j.radphyschem.2012.03.006

J.L. Campbell, At. Data Nucl. Data Tables 95, 115 (2009). https://doi.org/10.1016/j.adt.2008.08.002

V. Aylikci, A. Kahoul, N. KupAylikci, E. Tiraşoğlu, İ.H. Karahan, A. Abassi, M. Dogan, Rad. Phys. Chem. 106, 99 (2015). https://doi.org/10.1016/j.radphyschem.2014.06.030

J. L. Campbell and J.-X. Wang, At. Data Nucl. Data Tables 43, 281 (1989). https://doi.org/10.1016/0092-640X(89)90004-1

S. Puri, At. Data Nucl. Data Tables 93, 730 (2007). https://doi.org/10.1016/j.adt.2007.05.002

S.I. Salem, S.L. Panossian, and R.A. Krause, At. Data Nucl. Data Tables 14, 91 (1974). https://doi.org/10.1016/S0092-640X(74)80017-3

G. Lapicki, J. Phys. Chem. Ref. Data 18, 111 (1989). https://doi.org/10.1063/1.555838

D. Singh, H. R. Verma, P. S. Singh, and C. S. Khurana, Indian J. Phys. 66B, 281 (1992).

Y. C. Yu, E. K. Lin, C. W. Wang, P. J. Tsai, and W. C. Cheng, Chinese J. Phys. 32, 345 (1994).

S.J. Cipolla and C.J. Verzani, Nucl. Instrum. Meth. B 99, 18 (1995). https://doi.org/10.1016/0168-583X(95)00038-0

S. Ouziane, A. Amokrane, and M. Zilabdi, Nucl. Instrum. Meth. B 161, 141 (2001). https://doi.org/10.1016/S0168-583X(99)00916-7

S. Ouziane and A. Amokrane, Microchim. Acta 139, 131 (2002). https://doi.org/10.1007/s006040200051

B. H. Kusko, Ph.D. Thesis, University of California at Davis, 1983. 

 

 

How to Cite
J Miranda. How Do Uncertainties in Atomic Parameters Influence Theoretical Predictions of X-Ray Production Cross Sections By Proton Impact?. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 71-76.

 

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...