Monday 6 August 2018

Redistribution of Nickel Ions Embedded within Indium Phosphide Via Low Energy Dual Ion Implantations

 

  • Daniel C. JonesIon Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas 76203, USA
  • Joshua M. YoungIon Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas 76203, USA
  • Wickramaarachchige J. LakshanthaIon Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas 76203, USA
  • Satyabrata SinghIon Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas 76203, USA
  • Todd A. ByersIon Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas 76203, USA
  • Duncan L. WeathersIon Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas 76203, USA
  • Floyd D. McDanielIon Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas 76203, USA
  • Bibhudutta RoutIon Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas 76203, USA
Keywords: InP based optoelectronics devices, Ni nanoclusters, Dual Ion Implantations, Rutherford Backscattering, X-ray Photoelectron Spectroscopy

Abstract

Transition-metal doped Indium Phosphide (InP) has been studied over several decades for utilization in optoelectronics applications. Recently, interesting magnetic properties have been reported for metal clusters formed at different depths surrounded by a high quality InP lattice. In this work, we have reported accumulation of Ni atoms at various depths in InP via implantation of Ni- followed by H– and subsequently thermal annealing. Prior to the ion implantations, the ion implant depth profile was simulated using an ion-solid interaction code SDTrimSP, incorporating dynamic changes in the target matrix during ion implantation. Initially, 50 keV Ni- ions are implanted with a fluence of 2 × 1015 atoms cm-2, with a simulated peak deposition profile approximately 42 nm from the surface. 50 keV H- ions are then implanted with a fluence of 1.5 × 1016 atoms cm-2. The simulation result indicates that the H- creates damages with a peak defect center ~400 nm below the sample surface. The sample has been annealed at 50°C in an Ar rich environment for approximately 1hr. During the annealing, H vacates the lattice, and the formed nano-cavities act as trapping sites and a gettering effect for Ni diffusion into the substrate. The distribution of Ni atoms in InP samples are estimated by utilizing Rutherford Backscattering Spectrometry and X-ray Photoelectron Spectroscopy based depth profiling while sputtering the sample with Ar-ion beams. In the sample annealed after H implantation, the Ni was found to migrate to deeper depths of 125 nm than the initial end of range of 70 nm.

References

M. Zhang, X. Zeng, , P. K. Chu, R. Scholz, Ch. Lin, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 18, 2249 (2000). https://doi.org/10.1116/1.1288138

K. Potzger, Nuclear Instruments and Methods in Physics Research B. 78, 272 (2012).

R. T. Huang, C. F. Hsu, J. J. Kai, F. R. Chen, T. S. Chin, Applied Physics Letters. 87, 202507 (2005). https://doi.org/10.1063/1.2132081

S. Bedanta, W. Kleemann, Journal of Physics: Applied Physics. 42 013001 (2009).

G. Malladi, M. Huang, T. Murray, S. Novak, A. Matsubayashi et al. Journal of Applied Physics. 116, 5 (2014). https://doi.org/10.1063/1.4892096

M. S. Dhoubhadel, B. Rout, W. J. Lakshantha, S. K. Das, F. D’Souza et al., AIP Conference Proceedings. 1607, 16-23 (2014). http://dx.doi.org/10.1063/1.4890698.

A. Kinomura, J. S. Williams, J. Wong-Leung, M. Petravic, Nakano et al., Applied Physics Letters. 73, 2639 (1998). https://doi.org/10.1063/1.122538

B. Mohadjeri, J. S.Williams, J. Wong-Leung, Applied Physics Letters. 66, 1889 (1995). https://doi.org/10.1063/1.113311

A. Mutzke, R. Schneider, W. Eckstein, R. Dohmen, MPI for Plasma Physics. SDTrimSP: Version 5.00., IPP Report 12/8 Garching, (2011).

B. Rout, M. S. Dhoubhadel, P. R. Poudel, V.C. Kummari, B. Pandey et al., AIP Conference Proceedings. 1544, 11(2013).

W. J. Lakshantha, V. C. Kummari, T. Reinert, F. D. McDaniel, B. Rout, Nuclear Instruments and Methods. B 332, 33–36 (2014). https://doi.org/10.1016/j.nimb.2014.02.024

M. Mayer, Computer simulation program of RBS, ERDA, NRA and MEIS, SIMNRA version 6.06. The latest version is available at: http://home.rzg.mpg.de/~mam/.


Issue


How to Cite
Daniel C. Jones; Joshua M. Young; Wickramaarachchige J. Lakshantha; Satyabrata Singh; Todd A. Byers; Duncan L. Weathers; Floyd D. McDaniel; Bibhudutta Rout. Redistribution of Nickel Ions Embedded Within Indium Phosphide Via Low Energy Dual Ion Implantations. J. Nucl. Phy. Mat. Sci. Rad. A. 20186, 9-15.

Radon in Workplaces the Urgent Need of New Measurements and Devices

 

  • L TommasinoNational Energy for Environmental Protection (Retired) Via Cassia 1727, Roma, Italy.
  • G EspinosaInstitute of Physics, National Autonomous University of Mexico (UNAM), 04520 Mexico City, Mexico
Keywords: Radon in workplaces, personnel neutron dosimetry, radon film badges, radon risk assessment

Abstract

The existing passive radon monitors, their relative calibration facilities together with the past intercomparison exercises have been mission-oriented towards radon measurements in dwellings. These monitors have been successfully applied throughout the world for radon measurements in homes, characterized by temperatures in the range from 20 to 25°C and a relative humidity less than 50 R.H. A multitude of different problems may arise when these passive monitors are used in environment other than homes, such as in soil and in workplaces, where large humidity up to 100 RH and temperatures anywhere from 0°C to 40°C may be encountered. Under severe environmental conditions, different measurement errors may occur which have remained concealed to date. These errors may be caused by a drastic change of both the radon diffusivity through the and for the monitor housing respectively. permeation membranes or the radon absorption by the plastics, used for the track detector. For the compliance to the assessment of the occupational exposures, it is necessary to eliminate all the possible sources of errors, which may be conducive to litigation. Another important shortcoming of the existing passive monitors is the difficult to turn them on/off daily, as required for radon measurements in workplaces. Finally, most of the problems, listed above, can be solved by the exploitation of a new generation of passive monitors, known as Rn film-badges. These monitors are similar and often identical to neutron film-badges, which have proved to be very successful throughout the world for the personnel neutron dosimetry. In particular, the present paper will describe the unique characteristics of these radon film badges, such as compactness, fast time response, any desired response sensitivity, simplicity in turning them on and off, etc.

L. Tommasino, Nukleonica, 55, 549–553 (2010).

L. Tommasino, Radiation Protection Dosimetry. 78, 55–58 (1998). https://doi.org/10.1093/oxfordjournals.rpd.a032333

L. Tommasino, 8th International Conference on Protection against Radon at Home and at Work, September, Prague (In press), 12–16, (2016).

L. Harley, Radiation Protection Dosimetry. 45, 13–18 (1992). https://doi.org/10.1093/rpd/45.1-4.13

A. L. Frank, and E. V. Benton, Proceedings of 11th International Conference on Solid State Track Nuclear Track Detectors. 7-12 September 1981, Bristol, UK.

Fowler, P. H. and Chapman, V. M. pp. 531–534 Pergamon Press, Oxford (1982).

L. Vasudevan, and M. McLain, Health Physics. 66, 318–326 (1994). https://doi.org/10.1097/00004032-199403000-00013

R. L. Fleischer and R. S. Likes, Geophysics 44, 1863–1873 (1979).

L. Tommasino, D. E. Cherouati, J. L. Seidel, and M. Monnin, Nuclear Tracks and Radiation Measurements. 12, 681–684 (1986).

https://doi.org/10.1016/1359-0189(86)90678-3

R. L. Fleischer, Nuclear Tracks and Radiation measurements. 14, 421–45 (1988). https://doi.org/10.1016/1359-0189(88)90001-5

R. L. Fleischer, W. R. Giard and L. G. Turner, Radiation Measurements. 32, 325–328 (2000). https://doi.org/10.1016/S1350-4487(00)00046-9

C. B. Howarth, and J. C. H. Miles, HPA-RPD-027: Results of the 2003 NRPB intercomparison of passive radon detectors. Health Protection Agency. Centre

de Radiation, Chemical and Environmental Hazards. Radiation Protection Division. Chilton, Didcot, Oxfordshire, UK. (2003).

P. J. Gilvin and D. T. Bartlett, Nuclear Tracks and Raiation Measurements. 15, 571–576 (1988). https://doi.org/10.1016/1359-0189(88)90203-8

J. Miles, F. Ibrahimi, and K. Birch, Journal of Radiological Effects. 29, 269–271 (2009).

P. Wilkinson and Saunders, R. J. Theoretical aspects of the design of a passive radon dosimeters. The Science of the Total Environment, 45, 433–440 (1985).

https://doi.org/10.1016/0048-9697(85)90247-5

J. W. McBain, Sorption by a penetrant by a solid. Philosophical Magazine. 18, 916–925 (1909). https://doi.org/10.1080/14786441208636769

L. Tommasino, Radon Encyclopedia of Analytical Science. Academic Press Limited, pp 4359–4368 (1995).

H. M. Prichard and T.F. Gesell, Health Physics 33, 577–581 (1977). https://doi.org/10.1097/00004032-197712000-00008

H. L. Clever, Solubility Data Series. Pergamon Press: New York; Vol. 2, pp 1–357 (1979).

K. Gross, International Radon Symposium, Las Vegas. NV. AARST Proceeding, 11.00–11.13 (1999).

R. Guerin, P. Vuillemenot, Proceedings of the 3rd International Conference on Rare Gas Geochemistry, Besancon (Eds: D. Klein, A. Chambaudet, and M, Rebetez), 20-25 Sept. 559–578 (1995).

D. Pressyanov et al., Proceedings of IRPA Regional Congress on Radiation Protection in Central Europe, Budapest, 23-27, August 1999. Fontenay-aux-Roses,

France: International Radiation Protection Association; 716–722 (1999).

D. Pressyanov et al., Health Physics, 84, 642–651 (2001). https://doi.org/10.1097/00004032-200305000-00011

M. Saito, S. Takata, Bulletin of Tokyo Metropolitan Industrial Technology Research Institute. 3, 55–58 (2000)

C. M. Laot, Gas transport properties in polycarbonateInfluence of the cooling rate, physical aging, and orientation. Dissertation submitted to the Faculty of

the Virginia Polytechnic Institute and State University for the degree of Doctor of Philosophy, October 17th, 2001.

M. Marchetti, L. Tommasino and E. Casnati, Radiation Effects. 21, 198–24 (1974). https://doi.org/10.1080/10420157408230807

E. Casnati, M. Marchetti, and L. Tommasino, The use of heavy ions for the evaluation of the polymer stability. International Journal of Applied Radiation and Isotopes, 25, 307–313 (1974). https://doi.org/10.1016/0020-708X(74)90040-4

R. V. Griffith, and L. Tommasino, Dosimetry of Ionizing Radiations. Vol. III, 323–426, K. Kase et al. Editors. Academic Press, New York (1991).

L. Tommasino, M. C. Tommasino and P. Viola, Radiation Measurements. 44, 719–723 (2009). https://doi.org/10.1016/j.radmeas.2009.10.013

L. Tommasino, Radiation Emergency Medicine, 1, 47–55 (2012).

L. Tommasino, M. C. Tommasino and G. Espinosa, Revista Mexicana de Física. S56 (1), 1–4 (2010).

M. G. Cantaloub, J. F. Higginbotham and L. Semprini, 43rd Annual Conference on Bioassay, Analytical, and Environmental Radiochemistry, Charleston, SC, November 9–13, (1997).

L. Tommasino, Radiation Measurements, 34, 49–56 (2001). https://doi.org/10.1016/S1350-4487(01)00205-0

W. G. Tramposch, Apparatus for preventing the formation of metal tarnish. Patent No.: US 6,412, 628 B1 (2002).

J. Economy, Flame-Retardant Polymeric Materials. Plenum Publishing Corporation, 2, 203–236 (1978).

R. Y. Lin and J. Economy, Applied Polymer Symposium No. 21, 143–152, (1973).

L. Tommasino, P. Viola, and M. C. Tommasino, International Patent Application N° WO 2010/016085 A1 (2010).

P. Kotrappa, and L. Stieff, Proceedings of the 1994 International AARST Symposium, IIIP-1.1-1-6, Sept. 29-Octob.1, Charleston, SC (1994).

B. L. Cohen, and E. Cohen, Health Physics 45, 501–508 (1983). https://doi.org/10.1097/00004032-198308000-00027


Issue


How to Cite
L Tommasino; G Espinosa. Radon in Workplaces the Urgent Need of New Measurements and Devices. J. Nucl. Phy. Mat. Sci. Rad. A. 20186, 1-7.

Monday 5 February 2018

Clustering aspects in 20Ne Alpha-conjugate Nuclear System

 

  • Manpreet KaurDepartment of Physics, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, India
  • Birbikaram SinghDepartment of Physics, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, India
  • S.K. PatraInstitute of Physics, Bhubaneswar- 751005, India
  • Raj K. GuptaDepartment of Physics, Panjab University, Chandigarh-160014, India
Keywords: Clusters, Alpha conjugate nuclear system, Preformation probability

Abstract

The clustering aspects in alpha-conjugate nuclear system 20Ne has been investigated comparatively within microscopic and macroscopic approaches of relativistic mean field theory (RMFT) and quantum mechanical fragmentation theory (QMFT), respectively. For the ground state of 20Ne, the matter density distribution calculated within RMFT, depict the trigonal bipyramidal structure of 5α’s and within QMFT, the equivalent α+16O cluster configuration is highly preformed. For excited state corresponding to experimental available energy, the QMFT results show that in addition to α+16O clusters, other xα-type clusters (x is an integer) are also preformed but in addition np-xα type (n, p are neutron and proton, respectively) 10B clusters are having relatively more preformation probability, due to the decreased pairing strength in liquid drop energies at higher temperature. These results are in line with RMFT calculations for intrinsic excited state which show two equal sized fragments, probably 10B clusters.

References

L. R. Hafstad and E. Teller, Phys. Rev. 54, 681 (1938) https://doi.org/10.1103/ PhysRev.54.681; F. Hoyle, D. N. F Dunbar, W. A. Wenzel, and W. Whaling, Phys. Rev. 92, 1095c (1953); Minutes of the New Mexico Meeting, Alberquerque, September 2–5; C. W. Cook, W. A. Fowler, and T. Lauritsen, Phys. Rev. 107, 508 (1957).

K. Ikeda, N. Takigawa, and H. Horiuchi, Prog. Theor. Phys. Suppl. E68, 464 (1968) https://doi.org/10.1143/PTPS.E68.464; W. Von Oertzen et al., Eur. Phys. J.A 11, 403 (2001) https://doi.org/10.1007/s100500170052; W. Von Oertzen, M. Freer, and Y. Ka-Enyo, Phys. Rep. 432, 43 (2006) https://doi.org/10.1016/j.physrep.2006.07.001.

J. P. Ebran, E. Khan, T. Niksic, and D.Vretenar, Nature 487, 341 (2012) https:// doi.org/10.1038/nature11246; Phys. Rev. C 87, 044307 (2013) https://doi.org/10.1103/PhysRevC.87.044307.

R. K. Sheline and K. Wildermuth, Nucl. Phys. 21, 196 (1960) https://doi. org/10.1016/0029-5582(60)90046-8; F. D. Becchetti, K. T. Hecht, J. Janecke, and D. Overway, Nucl. Phys. A 339, 132 (1980) https://doi.org/10.1016/03759474(80)90246-8; D. Jenkins, J. Phys. Conf. Series 436, 012016 (2013) https://doi.org/10.1088/1742-6596/436/1/012016.

T. Yahmaya, Phys. Lett. B 306, 1 (1993) https://doi.org/10.1016/03702693(93)91128-A; M. Freer and A. C. Merchant, J. Phys. G 23, 261 (1997) https://doi.org/10.1088/0954-3899/23/3/002; M. Freer, Rep. Prog. Phys. 70, 2149 (2007) https://doi.org/10.1088/0034-4885/70/12/R03; E. D. Johnson et al., Eur. Phys. J. A 42, 135 (2009) https://doi.org/10.1140/epja/i2009-10887-1.

Y . Kanada-En’yo, M. Kimura, and A. Ono, Prog. Theor. Exp. Phys. 01A202 (2012).

H. Feldmeier, J. Schnack, Rev. Mod. Phys. 72, 655 (2000) https://doi.org/10.1103/RevModPhys.72.655.

P. Arumugam et al., PRC 71, 064308 (2005) https://doi.org/10.1103/PhysRevC.71.064308;

B. B. Singh, M. Kaur, V. Kaur, and R. K. Gupta, EPJ Web Conf. 86, 00048 (2015); JPS Conf. Proc 6, 030001 (2015); M. Kaur, B.B. Singh, S.K. Patra, and R.K. Gupta, Phys. Rev. C 95, 014611 (2017) https://doi.org/10.1103/ PhysRevC.95.014611; Proc. DAE Symposium on Nucl. Phys. 62, 506 (2017).

W. B. He et al., arXiv:1602.08955v3 [nucl-th] June, 2016.

Y. K. Gambhir, P. Ring, and A. Thimet, Ann. Phys. (NY) 198, 132 (1990) https:// doi.org/10.1016/0003-4916(90)90330-Q; C. E. Price and G. E. Walker, Phys. Rev. C 36, 354 (1987) https://doi.org/10.1103/PhysRevC.36.354; Y. Sugahara and H. Toki, Nucl. Phys. A579, 557 (1994) https://doi.org/10.1016/03759474(94)90923-7; P. K. Panda et al., Int. J. Mod. Phys. E 6, 307 (1997) https://doi.org/10.1142/S0218301397000202.

B.K. Sharma et al., JPG: Nucl. Part. Phys. 32, L1 (2006) https://doi.org/10.1088/0954-3899/32/1/L01.

J. Maruhn and W. Griener, Phys. Rev. Lett. 32, 548 (1974) https://doi.org/10.1103/PhysRevLett.32.548.

Raj K. Gupta et al., Phys. Rev. Lett. 35, 353 (1975) https://doi.org/10.1103/ PhysRevLett.35.353; Phys. Lett. B 60, 225 (1976) https://doi.org/10.1016/03702693(76)90286-0; Phys. Lett. B 67, 257 (1977) https://doi.org/10.1016/03702693(77)90364-1; Z. Physik A 283, 217 (1977) https://doi.org/10.1007/BF01418714.

H. Kröger and W. Scheid, J. Phys. G: Nucl. Phys. 6, L85 (1980) https://doi.org/10.1088/0305-4616/6/4/006.

W. D. Myers and W. D. Swiatecki, Nucl. Phys. 81, 1 (1966) https://doi.org/10.1016/0029-5582(66)90639-0.

J. Blocki, J. Randrup, W. J. Swiatecki, and C. F. Tsang, Ann. Phys. (NY) 105, 427 (1977) https://doi.org/10.1016/0003-4916(77)90249-4.

M. Bansal, R. Kumar, and R. K. Gupta, J. Phys.: Conf. Ser. 321, 012046 (2011) https://doi.org/10.1088/1742-6596/321/1/012046.

M. M. Coimbra et al., Nucl. Phys. A 535, 161 (1991) https://doi.org/10.1016/0375-9474(91)90521-7.

G.V. Rogachev et al., Prog. Theor. Phys. Suppl. 196, 184 (2012) https://doi.org/10.1143/PTPS.196.184; J. Phys.: Conf. Ser. 569, 012004 (2014) https://doi.org/10.1088/1742-6596/569/1/012004.


Issue


How to Cite
Manpreet Kaur; Birbikaram Singh; S.K. Patra; Raj K. Gupta. Clustering Aspects in 20Ne Alpha-Conjugate Nuclear System. J. Nucl. Phy. Mat. Sci. Rad. A. 20185, 319-326.

Mass Attenuation Coefficient Measurements of Some Nanocarbon Allotropes: A New Hope for Better Low Cost Less-Cumbersome Radiation Shielding Over A Wide Energy Range

 

  • E. RajasekharDepartment of Physics, Rayalaseema University, Kurnool, A.P., India
  • K.L. NarasimhamDepartment of Physics, Kakinada Institute of Technology & Science, Divilli, Tirupathi (V) 533433, A.P.,India
  • Aditya D. KurdekarDepartment of Physics, Sri Sathya Sai Institute of Higher Learning, Prashanthinilayam 515134 A.P., India
  • L.A. Avinash ChunduriAndhra Pradesh Medtech Zone, AMTZ, Vishakhapatnam, 530045, A.P. India
  • Sandeep ParnaikAndhra Pradesh Medtech Zone, AMTZ, Vishakhapatnam, 530045, A.P. India
  • K. venkataramaniahDepartment of Physics, Sri Sathya Sai Institute of Higher Learning, Prashanthinilayam 515134 A.P., India
Keywords: Graphene, SWCNTs, MWCNTs, Mass attenuation coefficient, NaI (Tl) detector

Abstract

The mass attenuation coefficients of graphene, MWNTs and, SWNTs have been measured for gamma energy range 356 to 1332 keV from the radioactive sources 60Co, 133Ba and 137Cs using a well calibrated gamma ray spectrometer consisting of a 3 ́ ́x 3 ́ ́ NaI(Tl) scintillation detector coupled to a PC based 8K nuclear Multi Channel Analyser (MCA). In an interesting way results showed that MWNTs had the highest values of mass attenuation coefficients indicating their potential use as the best shielding material.

References

T. Fujikawa and H. Arai, J. Elec. Spect. Relat. Phenom. 174 (2009) 85–92. https://doi.org/10.1016/j.elspec.2009.07.007

T. Fujikawa, J. Elec. Spect. Relat. Phenom. 173 (2009) 51–78. https://doi.org/10.1016/j.elspec.2009.04.011

K. Sawada, S.Murakami and N. Nagaosa, Phys. Rev. Lett. 96 (2006) 154802. https://doi.org/10.1103/PhysRevLett.96.154802

A.N. Lagarkov, and A.K. Sarychev, Phys. Rev. B 53 (1996) 6318–6336. https://doi.org/10.1103/PhysRevB.53.6318

Z. Peng, J. Peng and Y. Ou, Phys. Lett. A 359 (2006) 56–60. https://doi.org/10.1016/j.physleta.2006.05.076

S.B. Tooski, J. Appl. Phys. 109 (2011) 14318–14324. https://doi.org/10.1063/1.3525059

K.L. Dudley, R.W. Lawrence, Nano Lett. 5 (2005) 2131–2134. https://doi.org/10.1021/nl051375r

Z. Liu, G. Bai, Yi. Huang, Y. Ma, F. Du, F. Li, T. Guo, Y.Chen, Carbon. 45 (2007) 821–827. https://doi.org/10.1016/j.carbon.2006.11.020

A.L. Higginbotham, P.G. Moloney, M.C. Waid, J.G. Duque, C. Kittrell, H.K. Schmidt, J.J. Stephenson, S. Arepalli, L.L.Yowell, J.M. Your, Comp. Sci. and tech. 68 (2008) 3087–3092.

Gamma Vision -32, 1998.Ver 5.10.EG & G, ORTEC.

I. Kaplan , Nuclear Physics, Addison-Wesley, New York, 1972.

J.H. Hubbell, and S.M. Seltzer, NIST Standard Database 126, National Institute of Standards and Technology; Gaithersburg, MD, July 2004.

J. Lu., D. Yuan, L. Jie, L. Weinan, E.K. Thomas, Nano Lett.. 8 (2008) 3325–3329. https://doi.org/10.1021/nl801744z

P. R. Bandaru and A. M. Rao, JOM 59, 33 2007 Special Issue on Nanomaterials for Electronic Applications. https://doi.org/10.1007/s11837-007-0036-1

S. H. Park, P. Theilmann, K. Yang, A. M. Rao, and P. R. Bandaru, Applied Physics Letters 96, 043115 2010 https://doi.org/10.1063/1.3292214

L. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd ed. Butterworth-Heinemann, Boston, 1995.

F.J. Garcia-Vidal, J.M. Pitarke, J.B. Pendry, Phys Rev Lett. 78 (1997) 4289–4292. https://doi.org/10.1103/PhysRevLett.78.4289

Z. Ye, W.D. Deering, A. Krokhin, J.A. Roberts, Phys Rev B. 74 (2006) 075425–5. https://doi.org/10.1103/PhysRevB.74.075425



Issue

How to Cite
E. Rajasekhar; K.L. Narasimham; Aditya D. Kurdekar; L.A. Avinash Chunduri; Sandeep Parnaik; K. venkataramaniah. Mass Attenuation Coefficient Measurements of Some Nanocarbon Allotropes: A New Hope for Better Low Cost Less-Cumbersome Radiation Shielding Over A Wide Energy Range . J. Nucl. Phy. Mat. Sci. Rad. A. 20185, 311-317.

Effective Atomic Number Dependence of Radiological Parameters of Some Organic Compounds at 122 KeV Gamma Rays

 

  • Mohinder SinghDepartment of Basic and Applied Sciences, Punjabi university, Patiala, 147002.
  • Akash TondonDepartment of Physics, Punjabi university, Patiala, 147002.
  • Bhajan SinghDepartment of Physics, Punjabi university, Patiala, 147002.
  • B. S. SandhuDepartment of Physics, Punjabi university, Patiala, 147002.
Keywords: Effective atomic number, mass-energy absorption coefficient, mass attenuation coefficient, HVL, CT number

Abstract

Mass attenuation coefficient is a fundamental parameter of radiation interaction, from which the other radiological parameters like half Value Layer [HVL], tenth Value Layer [TVL], total atomic and electronic cross-sections, mass energy absorption coefficient, KERMA, CT number and effective atomic number are deduced. These parameters are extensively required in a number of fields such as diagnostic radiology, gamma ray spectroscopy, fluorescence analysis and reactor shielding. In the present work, mass attenuation coefficients are determined experimentally for some organic compounds at 122 keV incident photons using narrow-beam transmission geometry to establish a relation between effective atomic number (Zeff) and other deduced parameters. The experimental data for all these parameters are compared with the values deduced from WinXcom software package and are found to agree within experimental estimated errors. This study gives some insight about the photon interaction in some organic compounds whose effective atomic numbers match with some human body fluids.

References

G. J. Hine, Phys. Rev., 85, 725 (1952).

J. H. Hubbell, Int. J. Appl. Radiat. Isot., 33, 1269 (1982). https://doi.org/10.1016/0020-708X(82)90248-4

J. H. Hubbell and S. M. Selzer, NISTIR, 5632 (1995).

L. Gerward, N. Guilbert, K. B. Jensen and H. Levring, Radiat. Phys. Chem., 71, 653 (2004).

S. R. Manohara and S. M. Hanagodimath, Nucl. Instr. and Meth. B, 258, 321 (2007). https://doi.org/10.1016/j.nimb.2007.02.101

M. P. Singh, B. S. Sandhu and B. Singh, Phys. Scripta, 76, 281 (2007). https:// doi.org/10.1088/0031-8949/76/4/001

I. Akkurt, S. Kilincarslan and C. Basyigit, Ann. Nucl. Eng., 31, 577 (2004). https://doi.org/10.1016/j.anucene.2003.07.002

I. Han and L. Demir, J. X-Ray Sci. Techno., 18, 39 (2010).

M. Buyukyildiz, M. Kuurudirek, M. Ekici, O. Icelli and Y. Karabul, Prog. Nucl. Energ., 100, 245 (2017). https://doi.org/10.1016/j.pnucene.2017.06.014

S. R. Manohara, S. M. Hanagodimath and L. Gerward, J. Nucl. Mater., 393, 465 (2009). https://doi.org/10.1016/j.jnucmat.2009.07.001

D. F. Jackson and D. J. Hawkes, Phys. Rep., 70, 169 (1981). https://doi.org/10.1016/0370-1573(81)90014-4

D. C. Creagh, Nucl. Instrum. Methods A, 255, 1 (1987). https://doi.org/10.1016/0168-9002(87)91064-3



Issue

How to Cite
Mohinder Singh; Akash Tondon; Bhajan Singh; B. S. Sandhu. Effective Atomic Number Dependence of Radiological Parameters of Some Organic Compounds at 122 KeV Gamma Rays . J. Nucl. Phy. Mat. Sci. Rad. A. 20185, 299-310.

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...