Monday 6 August 2018

Annihilation of Dipolar Dark Matter: χχ→γγ

 

  • E. Barradas-GuevaraFaculty of Physical Mathematical Sciences, Meritorious Autonomous University of Puebla (BUAP), PO Box 1152, Puebla 72000, Mexico
  • J. L. Díaz-CruzFaculty of Physical Mathematical Sciences, Meritorious Autonomous University of Puebla (BUAP), PO Box 1152, Puebla 72000, Mexico
  • O. G. Félix BeltránFaculty of Electronics Sciences, Meritorious Autonomous University of Puebla (BUAP), PO Box 542, Puebla 72000, Mexico
  • C. Arellano CelizFaculty of Physical Mathematical Sciences, Meritorious Autonomous University of Puebla (BUAP), PO Box 1152, Puebla 72000, Mexico
Keywords: dark matter annihilation, dipolar dark matter, gamma-ray signatures, annihilation cross section, relic density

Abstract

In this work we study the annihilation of dark matter, considering it as a neutral particle with magnetic and/or electric moments not null. The calculation of the effective section of the process χχbar→γγ is made starting from a general form of coupling χ χbar γ in the framework of an extension of the Standard Model. We found, when taking into account an annihilation of DDM-antiDDM to monoenergetic photons, that for small masses, mχ ≤ 0 GeV, an electric dipole moment ~10–6 e cm is required to satisfy the current residual density, while for the range of greater sensitivity of HAWC, 10 TeV < Eg < 20 TeV, the electrical dipole moment must be of the order of 10–8 e cm.

References

F. Zwicky, Helv. Phys. Acta, 6, 110–127 (1933).

N. Fornengo, Adv. Space Res. 41, 2010–2018 (2008). https://doi.org/10.1016/j.asr.2007.02.067

G. Jungman, M. Kamionkowski, and K. Griest, Phys. Rep. 267, 195–373 (1996). https://doi.org/10.1016/0370-1573(95)00058-5

M. S. Turner, Phys. Rep. 197, 67–97(1990). https://doi.org/10.1016/0370-1573(90)90172-X

G. D. Starkman, A. Gould, R. Esmailzadeh, and S. Dimopoulos, Phys. Rev. D 41, 3594 (1990). https://doi.org/10.1103/PhysRevD.41.3594

E. D. Carlson, M. E. Machacek, and L. J. Hall, Astrophys. J., 398, 43 (1992). https://doi.org/10.1086/171833

D. N. Spergel, and P. J. Steinhardt, Phys. Rev. Lett. 84, 3760 (2000). https://doi.org/10.1103/PhysRevLett.84.3760

A. Gould, B. T. Draine, R. W. Romani, and S. Nussinov, Phys. Lett. B 238, 337 (1990). https://doi.org/10.1016/0370-2693(90)91745-W

S. Davidson, S. Hannestad, and G. Raffelt, JHEP 0005, 003 (2000).

S. L. Dubovsky, D. S. Gorbunov, and G. I. Rubtsov, JETP Lett. 79, 1 (2004). https://doi.org/10.1134/1.1675909

J. Ho Heo, Phys. Lett. B 693, 255–258 (2010). https://doi.org/10.1016/j.physletb.2010.08.035

J. Ho Heo, Phys. Lett. B 702, 205–208 (2011). https://doi.org/10.1016/j.physletb.2011.06.088

E. Masso, S. Mohanty, and S. Rao, Phys. Rev. D 80, 036009 (2009). https://doi.org/10.1103/PhysRevD.80.036009

S. Profumo, K. Sigurdson, Phys. Rev. D 75, 023521 (2007). https://doi.org/10.1103/PhysRevD.75.023521

K. Sigurdson, M. Doran, A. Kurylov, R. R. Caldwell, and M. Kamionkowski, Phys. Rev. D 70, 083501 (2004) [Erratum: Phys. Rev. D 73, 089903 (2006)]. https://doi.org/10.1103/PhysRevD.70.083501

E. Fermi, and E. Teller, Phys. Rev. 72, 399 (1947). https://doi.org/10.1103/PhysRev.72.399

L. Bergström, Rept. Prog. Phys. 63, 793 (2000). https://doi.org/10.1088/0034-4885/63/5/2r3

N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, and N. Weiner, Phys. Rev. D 79, 015014 (2009). https://doi.org/10.1103/PhysRevD.79.015014

A. U. Abeysekara, et al. (HAWC Collaboration). Astropart. Phys. 50-52, 26–32 (2013). https://doi.org/10.1016/j.astropartphys.2013.08.002

J. D. Wells, arXiv: hep-ph/9404219 (2009).

M. Cannoni, Eur. Phys. J. C76, 3, 137 (2016). https://doi.org/10.1140/epjc/s10052-016-3991-2

M. Drees, H. Iminniyaz, and M. Kakizaki, Phys. Rev. D 76, 103524 (2007). https://doi.org/10.1103/PhysRevD.76.103524

S. Funk, Proc. Nat. Acad. Sci. 112, 2264 (2015). https://doi.org/10.1073/pnas.1308728111

A. U. Abeysekara, et al. (HAWC Collaboration). Phys. Rev. D 90, 122002 (2014). https://doi.org/10.1103/PhysRevD.90.122002

G. Steigman, B. Dasgupta, and J. F. Beacom, Phys. Rev. D 86, 023506 (2012). https://doi.org/10.1103/PhysRevD.86.023506

C. L. Bennett, et al. Astrophys. J. Suppl. 208, 20 (2013). https://doi.org/10.1088/0067-0049/208/2/20


Issue


How to Cite
E. Barradas-Guevara; J. L. Díaz-Cruz; O. G. Félix Beltrán; C. Arellano Celiz. Annihilation of Dipolar Dark Matter: χχ→γγ. J. Nucl. Phy. Mat. Sci. Rad. A. 20186, 33-38.

Dependence on the Identification of the Scale Energy Parameter Q 2 in the Quark Distribution Functions for a DIS Production of Za

 

  • M. Gómez-BockInstitute of Physics, Meritorious Autonomous University of Puebla (BUAP), PO Box J-48, 52570 Puebla, Mexico.
  • W. GonzalezInstitute of Physics, Meritorious Autonomous University of Puebla (BUAP), PO Box J-48, 52570 Puebla, Mexico.
  • L. López LozanoAcademic area of Mathematics and Physics. Hidalgo State Autonomous University. Kilometer 4.5 Pachuca-Tulancingo highway. 42184 Pachuca, Hidalgo. México.
  • S. Rosado-NavarroFaculty of Physical Mathematical Sciences, Meritorious Autonomous University of Puebla (BUAP), PO Box 1364, 72000 Puebla, Mexico.
  • A. RosadoInstitute of Physics, Meritorious Autonomous University of Puebla (BUAP), PO Box J-48, 52570 Puebla, Mexico.
Keywords: Bosonic Production, Deep inelastic scattering, Momentum Transferred, Parton Distribution Function, Parton Model

Abstract

We discuss the Z-production in a DIS (Deep Inelastic Scattering) process e + p → e + Z + X using the Parton Model, within the context of the Standard Model. In contrast with deep inelastic eP-scattering (e + p → e + X), where the choice of Q2, as the transferred momentum squared, is unambiguous; whereas in the case of boson production, the transferred momentum squared, at quark level, depends on the reaction mechanism (where is the EW interaction taking place). We suggest a proposal based on the kinematics of the process considered and the usual criterion for Q2, which leads to a simple and practical prescription to calculate Z-production via ep-DIS. We also introduce different options in order o perform the convolution of the Parton distribution functions (PDFs) and the scattering amplitude of the quark processes. Our aim in this work is to analyze and show how large could be the dependence of the total cross-section rates on different possible prescriptions used for the identification of the scale energy parameter Q2. We present results for the total cross-section as a function of the total energy √s of the system ep, in the range 300 <√s ≤ 1300 GeV.


References

C. Patrignani et al. (Particle Data Group), Chin Phys. C, 40, 100001 (2016). https://doi.org/10.1088/1674-1137/40/10/100001

S. L. Glashow, Nucl. Phys. 22, 579 (1961); S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967); A. Salam, Proc. 8th NOBEL Symposium, ed. N. Svartholm p.367, Almqvist and Wiksell, Stockholm, (1968). https://doi.org/10.1016/0029-5582(61)90469-2https://doi.org/10.1103/PhysRevLett.19.1264

J. D. Bjorken and E. A. Paschos, Phys. Rev. 185, 1875 (1969). https://doi.org/10.1103/PhysRev.185.1975

R. P. Feynman: Photon-hadron interactions, Reading: Benjamin (1972).

R. P. Feynman, Third International Conference at Stony Brook, N. Y. Gordon & Breach , pp 237–249 (1969).

J. Pumplin, D. R Stump, J. Huston, H. L. Lai, P. M. Nadolsky and W. K. Tung, JHEP 0207, 012 (2001).

D. Stump, J. Huston, J. Pumplin, W. K. Tung, H. L. Lai, S. Kuhlmann and J. F. Owens, JHEP 0310, 046 (2003).

M. Bohm and A. Rosado, Z. Phys. C 34, 117 (1987). https://doi.org/10.1007/BF01561123

E. Byckling and Kajantie: Particle hinematics, New York: Willey (1972).

C. H. Llewellyn-Smith and B. H. Wiik, DESY-77-38.

G. Altarelli, G. Martinelli, B. Mele and R. Ruckl, Nucl. Phys. B 262, 204 (1985). https://doi.org/10.1016/0550-3213(85)90284-6

P. Salati and J. C. Wallet, Z. Phys. C. 16, 155 (1982). https://doi.org/10.1007/BF01572266


Issue


How to Cite
M. Gómez-Bock; W. Gonzalez; L. López Lozano; S. Rosado-Navarro; A. Rosado. Dependence on the Identification of the Scale Energy Parameter Q 2 in the Quark Distribution Functions for a DIS Production of Za. J. Nucl. Phy. Mat. Sci. Rad. A. 20186, 27-32.

Signal of h → µτ, ττ in ν2HDM⊕S3

 

  • E Barradas GuevaraFaculty of Physical Mathematical Sciences, Meritorious Autonomous University of Puebla (BUAP), PO Box 1152, Puebla 72000, Mexico
  • F. Cazarez-BushInstitute of Mathematics, National Autonomous University of Mexico (UNAM), PO Box 139-B 6219, 04510 Mexico City. Mexico
  • O. Felix Beltran5Faculty of Electronics Sciences, Meritorious Autonomous University of Puebla (BUAP), PO Box 542, Puebla 72000, Mexico
  • F. Gonzalez-CanalesInstitute of Mathematics, National Autonomous University of Mexico (UNAM), PO Box 139-B 6219, 04510 Mexico City. Mexico
Keywords: Leptons, Seesaw mechanism, flavour symmetry, 2HDM-III

Abstract

Nowadays in particle physics, the exploration of the flavor physics through the Higgs boson phenomenology is one of the main goals in the field. In particular we are interested in the Lepton Flavour Violation (LFV) processes. In this work, we explore the processes h → µτ, ττ in the theoretical framework of a flavored extension of the Standard Model, which has two Higgs fields and the horizontal permutation symmetry S3 imposed in the Yukawa sector, this extension is called v2HDM⊗S3.We obtain the couplings Φµτ, ττ as well as Br(h → µτ) in function of the model parameters in function of the model parameters, which are constricted by means the experimental results of  ΦMS → µτ reported in the literature.

References

G. Aad, et al. (ATLAS Collaboration). Phys. Lett. B, 716, 1–29, (2012). https://doi.org/10.1016/j.physletb.2012.08.020

Chatrchyan, et al. (CMS Collaboration). Phys. Lett. B, 16, 30–61, (2012). https://doi.org/10.1016/j.physletb.2012.08.021

F. Capozzia, E. Lisic , A. Marroned, D. Montaninoe, A. Palazzod, Nuclear Physics B 908, 218–234, (2016). https://doi.org/10.1016/j.nuclphysb.2016.02.016

A. Gando, et al. (KamLAND). Phys. Rev. D, 83, 052002 (2011). https://doi.org/10.1103/PhysRevD.83.052002

A. Gando, et al. (KamLAND). Phys. Rev. D, 88, 033001 (2013). https://doi.org/10.1103/PhysRevD.88.033001

J. H. Choi, et al. (RENO). Phys. Rev. Lett. 116, 211801 (2016) https://doi.org/10.1103/PhysRevLett.116.211801

S. H. Seo, (RENO). Proceedings, 26th International Conference on Neutrino Physics and Astrophysics (Neutrino 2014), AIP Conf. Proc. 1666, 080002 (2015).

Y. Abe, et al. (Double Chooz). JHEP, 10, 086 (2014) [Erratum: JHEP02,074(2015)].

F. P. An, et al. (Daya Bay). Phys. Rev. Lett., 116, 061801 (2015). https://doi.org/10.1103/PhysRevLett.116.061801

T. Asaka, et al. Phys. Lett. B, 620, 17–26 (2005). https://doi.org/10.1016/j.physletb.2005.06.020

A. G. Beda, et al. (GEMMA Collaboration). Adv. High Energy Phys., vol. 2012, 350150 (2012).

Felix-Beltran, et al. Phys. Lett. B, 742, 347–352 (2015). https://doi.org/10.1016/j.physletb.2015.02.003

D. Atwood, L. Reina, and A. Soni, Phys. Rev. D, 55, 3156–3176 (1997). https://doi.org/10.1103/PhysRevD.55.3156

M. Krawczyk, and D. Sokolowska, International Linear Collider Workshop (LCWS07 and ILC07) Hamburg, Germany, May 30-June 3, 2007, eConf C0705302, p. HIG09 (2007), [141(2007)].

M. Krawczyk, Proceedings Europhysics Conference on High Energy Physics (EPS-HEP 2005). PoS HEP2005, 335 (2006).

F. F. Deppisch, Fortsch. Phys., 61, 622–644 (2013). https://doi.org/10.1002/prop.201200126

I. Dorsner, and S. M. Barr. Phys. Rev. D, 65, 095004 (2002). https://doi.org/10.1103/PhysRevD.65.095004

F .Gonzalez Canales, et al. Fortsch. Phys., 61, 546–570 (2013). https://doi.org/10.1002/prop.201200121

E. Barradas-Guevara, et al. Phys. Rev. D, 97, no. 3, 035003 (2018). https://doi.org/10.1103/PhysRevD.97.035003

G. Aad, et al. (ATLAS Collaboration). JHEP 211 (2015).


Issue

How to Cite
E Barradas Guevara; F. Cazarez-Bush; O. Felix Beltran; F. Gonzalez-Canales. Signal of H → µτ, ττ in ν2HDM⊕S3. J. Nucl. Phy. Mat. Sci. Rad. A. 20186, 23-26.

Spontaneous CP Violation Jarlskog Invariant in SM ⊗ S3

 

  • J. Montano-PerazaFaculty of Electronics Sciences, Meritorious Autonomous University of Puebla (BUAP), PO Box 542, Puebla 72000, Mexico
  • E. Barradas-GuevaraDepartment of Physics Investigation, University of Sonora, PO Box 1626, 83000 Hermosillo, Sonora. México
  • O. Felix-BeltranFaculty of Physical Mathematical Sciences, Meritorious Autonomous University of Puebla (BUAP), PO Box 1152, Puebla 72000, Mexico
  • E. Rodriguez-JaureguiDepartment of Physics, University of Sonora, PO Box 1626, 83000 Hermosillo, Sonora. México
Keywords: CP violation, Jarlskog invariant, S3 Symmetry

Abstract

In our days, CP (Charge Parity) violation in the Standar Model of fundamental interactions still remains as an open problem. It is well known that explicit CP violation may be included by impossing complex Yukawa couplings in the Yukawa sector or complex Higgs couplings in exttended Higgs sectors with more than one Higgs field. It is desirable to have a fundamental CP violation theory, in that sence, we analyse the diferent secenarios for Spontaneous CP violation in an exteded Higgs model with three Higgs fields and a discrete flavour permutational symmetry S3. Spontaneous CP violation effects contribute to the Higgs mass matrix, as well as, up and down quark mass matrices. This complex quark mass matrices allow us to study the conditions for a non-vanishing Jarlskog invariant J which provides a necessary and sufficient contribution for a spontaneous CPV coming from SM ⊗ S3.

References

Barradas-Guevara, E., Felix-Beltran, O., RodriguezJauregui, E., (2014). Trilinear selfcouplings in an S(3) flavored Higgs model. Phys. Rev., D90(9):095001. https://doi.org/10.1103/PhysRevD.90.095001

Barradas-Guevara, E., Felix-Beltran, O., RodriguezJauregui, E., (2016). Doi:10.15415/jnp.2016.41022, https://doi.org/10.15415/jnp.2016.41022

Emmanuel-Costa, D., Ogreid, O. M., Osland, P., Rebelo, M. N., Spontaneous symmetry breaking in the S3- symmetric scalar sector. JHEP 1602 (2016). 154, Erratum: JHEP 1608 (2016) 169 arXiv:1601.04654 [hep-ph] CERN-TH-2016-013

Espinoza, C., Garcés, E. A., Mondragón, M., ReyesGonzález , H., The S3 Symmetric Model with Dark Scalar. arXiv:1804.01879v1 [hep-ph].

Jarlskog, C., Phys. Rev Lett. 55, 1039 (1985). https://doi.org/10.1103/PhysRevLett.55.1039

Kubo, J., Phys. Lett. B 578, 156 (2004). [Erratumibid. B 619, 387 (2005)] [arXiv:hep ph/0309167]. https://doi.org/10.1016/j.physletb.2003.10.048

Kubo, J., Mondragón, A., Mondragón, M., RodríguezJáuregui, E., Félix-Beltrán, O., Peinado, E., J. Phys.: Conf. Ser. 18, 380–384 (2005). https://doi.org/10.1088/1742-6596/18/1/013

Kubo, J., Mondragón, A., Mondragón, M., RodriguezJáuregui, E., Prog. Theor. Phys. 109, 795 (2003). [Erratum-ibid. 114, 287 (2005)] hep-ph/0302196v4

Kubo, J., Okada, H., Sakamaki, F., Phys. Rev. D70, 036007 (2004). https://doi.org/10.1103/PhysRevD.70.036007


Issue


How to Cite
J. Montano-Peraza; E. Barradas-Guevara; O. Felix-Beltran; E. Rodriguez-Jauregui. Spontaneous CP Violation Jarlskog Invariant in SM ⊗ S3. J. Nucl. Phy. Mat. Sci. Rad. A. 20186, 17-21.

Redistribution of Nickel Ions Embedded within Indium Phosphide Via Low Energy Dual Ion Implantations

 

  • Daniel C. JonesIon Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas 76203, USA
  • Joshua M. YoungIon Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas 76203, USA
  • Wickramaarachchige J. LakshanthaIon Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas 76203, USA
  • Satyabrata SinghIon Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas 76203, USA
  • Todd A. ByersIon Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas 76203, USA
  • Duncan L. WeathersIon Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas 76203, USA
  • Floyd D. McDanielIon Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas 76203, USA
  • Bibhudutta RoutIon Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas 76203, USA
Keywords: InP based optoelectronics devices, Ni nanoclusters, Dual Ion Implantations, Rutherford Backscattering, X-ray Photoelectron Spectroscopy

Abstract

Transition-metal doped Indium Phosphide (InP) has been studied over several decades for utilization in optoelectronics applications. Recently, interesting magnetic properties have been reported for metal clusters formed at different depths surrounded by a high quality InP lattice. In this work, we have reported accumulation of Ni atoms at various depths in InP via implantation of Ni- followed by H– and subsequently thermal annealing. Prior to the ion implantations, the ion implant depth profile was simulated using an ion-solid interaction code SDTrimSP, incorporating dynamic changes in the target matrix during ion implantation. Initially, 50 keV Ni- ions are implanted with a fluence of 2 × 1015 atoms cm-2, with a simulated peak deposition profile approximately 42 nm from the surface. 50 keV H- ions are then implanted with a fluence of 1.5 × 1016 atoms cm-2. The simulation result indicates that the H- creates damages with a peak defect center ~400 nm below the sample surface. The sample has been annealed at 50°C in an Ar rich environment for approximately 1hr. During the annealing, H vacates the lattice, and the formed nano-cavities act as trapping sites and a gettering effect for Ni diffusion into the substrate. The distribution of Ni atoms in InP samples are estimated by utilizing Rutherford Backscattering Spectrometry and X-ray Photoelectron Spectroscopy based depth profiling while sputtering the sample with Ar-ion beams. In the sample annealed after H implantation, the Ni was found to migrate to deeper depths of 125 nm than the initial end of range of 70 nm.

References

M. Zhang, X. Zeng, , P. K. Chu, R. Scholz, Ch. Lin, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 18, 2249 (2000). https://doi.org/10.1116/1.1288138

K. Potzger, Nuclear Instruments and Methods in Physics Research B. 78, 272 (2012).

R. T. Huang, C. F. Hsu, J. J. Kai, F. R. Chen, T. S. Chin, Applied Physics Letters. 87, 202507 (2005). https://doi.org/10.1063/1.2132081

S. Bedanta, W. Kleemann, Journal of Physics: Applied Physics. 42 013001 (2009).

G. Malladi, M. Huang, T. Murray, S. Novak, A. Matsubayashi et al. Journal of Applied Physics. 116, 5 (2014). https://doi.org/10.1063/1.4892096

M. S. Dhoubhadel, B. Rout, W. J. Lakshantha, S. K. Das, F. D’Souza et al., AIP Conference Proceedings. 1607, 16-23 (2014). http://dx.doi.org/10.1063/1.4890698.

A. Kinomura, J. S. Williams, J. Wong-Leung, M. Petravic, Nakano et al., Applied Physics Letters. 73, 2639 (1998). https://doi.org/10.1063/1.122538

B. Mohadjeri, J. S.Williams, J. Wong-Leung, Applied Physics Letters. 66, 1889 (1995). https://doi.org/10.1063/1.113311

A. Mutzke, R. Schneider, W. Eckstein, R. Dohmen, MPI for Plasma Physics. SDTrimSP: Version 5.00., IPP Report 12/8 Garching, (2011).

B. Rout, M. S. Dhoubhadel, P. R. Poudel, V.C. Kummari, B. Pandey et al., AIP Conference Proceedings. 1544, 11(2013).

W. J. Lakshantha, V. C. Kummari, T. Reinert, F. D. McDaniel, B. Rout, Nuclear Instruments and Methods. B 332, 33–36 (2014). https://doi.org/10.1016/j.nimb.2014.02.024

M. Mayer, Computer simulation program of RBS, ERDA, NRA and MEIS, SIMNRA version 6.06. The latest version is available at: http://home.rzg.mpg.de/~mam/.


Issue


How to Cite
Daniel C. Jones; Joshua M. Young; Wickramaarachchige J. Lakshantha; Satyabrata Singh; Todd A. Byers; Duncan L. Weathers; Floyd D. McDaniel; Bibhudutta Rout. Redistribution of Nickel Ions Embedded Within Indium Phosphide Via Low Energy Dual Ion Implantations. J. Nucl. Phy. Mat. Sci. Rad. A. 20186, 9-15.

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...