Monday 6 August 2018

Agent Based Model of the Cytosine Radiation Induced Reaction

 

  • A L Rivera
    Institute of Nuclear Sciences. National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico; Complexity Science Center, National Autonomous University of Mexico (UNAM)
  • S Ramos-Beltran
    Complexity Science Center, National Autonomous University of Mexico (UNAM)
  • A Paredes-Arriaga
    Institute of Nuclear Sciences. National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico; Sciences Faculty, National Autonomous University of Mexico (UNAM), 04510 Mexico City, Mexico
  • A Negron-Mendoza
    Institute of Nuclear Sciences. National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico
Keywords: Radiation induced chemical reactions, Cytosine, Kinetics of reactions, Agent-based model

Abstract

The stability of cytosine in aqueous solution was studied in the laboratory, simulating prebiotic conditions and using gamma radiation as an energy source, to describe cytosine behavior under radiation. For a better understanding of the radiation-induced processes, we proposed a mathematical model that considers chemical reactions as nonlinear ordinary differential equations. The radiolysis can be computationally simulated by an agent-based model, wherein each chemical species involved is considered to be an agent that can interact with other species with known reaction rates. The radiation is contemplated as a factor that promotes product formation/destruction, and the temperature determines the diffusion speed of the agents. With this model, we reproduce the changes in cytosine concentration obtained in the laboratory under different irradiation conditions.

 

References

M. Colín-García, A. Negrón-Mendoza, S. RamosBernal, International Journal of Astrobiology, 9, 279– 288, (2009). http://dx.doi.org/10.1089/ast.2006.0117

H. G. Hill, J. A. Nuth, Astrobiology, 3(2), 291–304, (2003). https://doi.org/10.1089/153110703769016389

A. Negrón-Mendoza, C. Ponnamperuma, Photochemistry and Photobiology, 36(5), 595–597, (1982). https://doi.org/10.1111/j.1751-1097.1982.tb04421.x

A. Negrón-Mendoza, G. Albarran, S. Ramos, E. Chacon, Journal of Biological Physics, 20(1), 71–76, (1995). http:/dx.doi.org/10.1007/BF00700422.

S. Castillo, A. Negrón-Mendoza, Z. D. Draganic, I. G. Draganic, Radiation Physics and Chemistry, 26, 437–443, (1985). https://doi.org/10.1016/0146-5724(85)90232-8

J. Cruz-Casta-eda, A. Negrón-Mendoza, D. Frías, M. Colín-García, A. Heredia, et al., Journal of Radioanalytical and Nuclear Chemistry, 304(1), 219–225, (2015). https://doi.org/10.1007/s10967-014-3711-z

S. L. Miller, Science, 117(3046), 528–529, (1953). https://doi.org/10.1126/science.117.3046.528

W. Gilbert, Nature, 319(6055), 618, (1986). https://doi.org/10.1038/319618a0

G. Sanchez-Mejorada, D. Frias, A. Negrón-Mendoza, S. Ramos-Bernal, Radiation Measurements, 43(2), 287–290, (2008). https://doi.org/10.1016/j.radmeas.2007.11.038

V. P. Zhdanov, Surface Science Reports, 45(7), 231–326, (2002). https://doi.org/10.1016/S0167-5729(01)00023-1

A. L. Rivera, S. Ramos-Bernal, A. Negrón-Mendoza, J. Nucl. Phys. Mat. Sci. Rad. A., 5(1), 15–23, (2017). https://doi.org/10.15415/jnp.2017.51002

A. L. Rivera, S. Ramos-Bernal, A. Negrón-Mendoza, J. Nucl. Phys. Mat. Sci. Rad. A., 4(1), 149–157, (2016). https://doi.org/10.15415/jnp.2016.41015

A. A. Berryman, Ecology, 75, 1530–1535, (1992). https://doi.org/10.2307/1940005

A. Paredes Arriaga, Estabilidad de la guanina y citosinaendisoluciónacuosa y suspensión con Montmo rillonitasódica: simulaciones de charcasen la tierraprimitive (Stability of guanine and cytosine in aqueous solution and suspension with sodium Montmorillonite: simulations of ponds in the primitive land). Thesis, Universidad Nacional Autónoma de México, Mexico (2018).

A. L. Meléndez-López, S. Ramos-Bernal, M. L. RamírezVázquez, AIP Conference Proceedings 1607, 111, (2014). https://doi.org/10.1063/1.4890710

L. Lang, Absorption spectra in the ultraviolet and visible regions, Vol. 1 (Academic Press, New York, 1961). 


Issue
 
 
How to Cite
A L Rivera; S Ramos-Beltran; A Paredes-Arriaga; A Negron-Mendoza. Agent Based Model of the Cytosine Radiation Induced Reaction. J. Nucl. Phy. Mat. Sci. Rad. A. 2018, 6, 93-97.
 

 

 

Synthesis of MgB4O7:Dy3+and Thermoluminescent Characteristics at Low Doses of Beta Radiation

 

  • O Legorreta-AlbaInstitute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico; Chemistry Faculty, National Autonomous University of Mexico (UNAM), 3000 Universidad avenue, 04510 Mexico City, México
  • E Cruz-ZaragozaInstitute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico
  • D DíazChemistry Faculty, National Autonomous University of Mexico (UNAM), 3000 Universidad avenue, 04510 Mexico City, México
  • J Marcazzó"Arroyo Seco” Institute of Physics (Uncpba) and Cificen (Uncpba-Cicpba Conicet), Pinto 399, 7000 Tandil, Argentina
Keywords: Magnesium tetraborate, Dysprosium, Thermoluminescence, Beta-radiation, Dosimeter

Abstract

The synthesis and thermoluminescent characteristics of dysprosium-doped MgB4O7 are analyzed. The phosphor at different concentrations (0, 0.1, 0.5, 1, 2 and 4 mol%) of the dopant was prepared by the solution-assisted method. The magnesium borate compound was confirmed by X-ray diffraction. The annealing and dopant concentrations effects on the crystalline matrix were investigated. The highest thermoluminescent sensitivity was found with 450°C of annealing temperature and at high Dy3+ concentration too. The un-doped MgB4O7 phosphor shows a broad glow curve which peaked at 199°C and about 306 °C. Introducing Dy3+ dopant in the matrix that behavior was strongly changed. The wide glow curve shows three glow peaks; two small shoulders at 124 and 195 °C, and a highest peak between 323 and 336 °C temperature range. A large linear dose-response (5 – 2000 mGy) beta dose was obtained. The complex glow curves were deconvolved and the kinetics parameters were determined considering the general order kinetics model.


References

O. Annalakshmi, M. T. Jose, U. Madhusoodanan, J. Sridevi, B. Venkatraman, G. Amarendra, A. B. Mandal, Radiat. Eff. Defects Solids, 169(7), 636–645 (2014). https://doi.org/10.1080/10420150.2014.918128

A. J. J. Bos, Nucl. Instrum. Methods B, 184, 3–28 (2001). https://doi.org/10.1016/S0168-583X(01)00717-0

L. L. Campos, O. O.Fernandes, Radiat. Prot. Dosim., 33(1/4), 111–113 (1990). https://doi.org/10.1093/oxfordjournals.rpd.a080769

G. Cedillo Del Rosario, E. Cruz-Zaragoza, M. García Hipólito, J. Marcazzó J. M. A. Hernández, H. S. Murrieta, Applied Radiation and Isotopes, 127, 103–108 (2017). https://doi.org/10.1016/j.apradiso.2017.05.018

E. Cruz-Zaragoza, G. Cedillo Del Rosario, M. García Hipólito, J. Marcazzó, J. M. A. Hernández, E. Camarillo, H. S. Murrieta, J. Nucl. Phys. Mat. Sci. Rad. App., 5(1), 169–178 (2017). https://doi.org/10.15415/jnp.2017.51016

E. Cruz-Zaragoza, C. Furetta, J. Marcazzó, M. Santiago, C. Guarneros, M. Pacio, R. Palomino, J. Lumin., 179, 260–264 (2016). https://doi.org/10.1016/j.jlumin.2016.07.003

T. Depci, G. Ozbayoglu, A. Yilmaz, Metall. Mater. Trans. A, 41(10), 2284–2594 (2010). https://doi.org/10.1007/s11661-010-0341-0

M. Dogan, A. N. Yazici, Journal of Optoelectronics and Advanced Materials, 11(11), 1783–1787 (2009).

C. M. H. Driscoll, S. J. Mundy, J. M. Elliot, Radiat. Prot. Dosim., 1(2), 135–137 (1981).

D. Evis, A. Yucel, N. Kizilkaya, et al., Applied Radiation and Isotopes, 116, 138–142 (2016). https://doi.org/10.1016/j.apradiso.2016.08.004

F. Fukuda, N. Takeuchi, J. Mater. Sci. Lett., 8, 1001– 1002 (1989). https://doi.org/10.1007/BF01730467

C. Furetta, Handbook of Thermoluminescence. Singapore: World Scientific Publishing Co. Pte. Ltd. (2003). https://doi.org/10.1142/5167

C. Furetta, G. Kitis, P. S. Weng, T. S. Chu, Nucl. Instrum. Methods A, 420, 441–445 (1999). https://doi.org/10.1016/S0168-9002(98)01198-X

T. Hitomi, Radiothermoluminescence Dosimeter and Materials. U.S. Patent Filed no. 213 950 (1971).

M. Israeli, N. Kristianpoller, R. Chen, Phys. Rev. B, 6(12), 4861–4867 (1972). https://doi.org/10.1103/PhysRevB.6.4861

S. P. Lochab, A. Pandey, P. D. Sahare, R. S. Chauhan, N. Salah, R. Ranjan, Phys. Status Solidi A, 204(7), 2416–2425 (2007). https://doi.org/10.1002/pssa.200622487

C. F. May, J. A. Partridge, J. Chem. Phys., 40, 1401–1409 (1964). https://doi.org/10.1063/1.1725324

E. F. Mische, S. W. S. Mckeever, Radiat. Prot. Dosim., 29(3), 159–175 (1989). https://doi.org/10.1093/oxfordjournals.rpd.a080548

M. Prokic, Nucl. Instrum. Methods, 175, 83–86 (1980). https://doi.org/10.1016/0029-554X(80)90262-1

P. D. Sahare, M. Singh, P. Kumar, J. Lumin., 160, 158–164 (2015). https://doi.org/10.1016/j.jlumin.2014.11.042

M. Santiago, C. Graseli, E. Caseli, M. Lester, A. Lavat, F.Spano, Phys. Stat. Sol. (a), 185(2), 285–289 (2001). https://doi.org/10.1002/1521-396X(200106) 185:2<285::AID-PSSA285>3.0.CO;2-9

L. F. Souza, P. L. Antonio, L. V. E. Caldas, D. N. Souza, Nucl. Instrum. Methods Phys. Res. A, 784, 9–13 (2015). https://doi.org/10.1016/j.nima.2014.12.030

A. K. Subanakov, Zh. G. Bazarova, A. I. Nepomnyschih, A. V. Perevalov and B. G. Bazarov, Inorg. Mater., 50(5), 485–488 (2014). https://doi.org/10.1134/S0020168514050185

J. H. Schulman, R. D. Kirk, E. J. West, In Proc. Int. Conf. on Luminescence Dosimetry, US AEC Symposium series CONF-650637 (pp. 113–117). Stanford University, USA (1967).

D. I. Shahare, S. J. Dhoble, S. V. Moharil, J. Mater. Sci. Lett., 12, 1873–1874 (1993). https://doi.org/10.1007/BF00540016

M. Takenaga, O. Yamamoto, T. Yamashita, Nucl. Instrum. Methods, 175, 77–78 (1980). https://doi.org/10.1016/0029-554X(80)90259-1

E. G. Yukihara, E. D. Milliken, B. A. Doull, J. Lumin., 154, 251–259 (2014). https://doi.org/10.1016/j.jlumin.2014.04.038


Issue


How to Cite
O Legorreta-Alba; E Cruz-Zaragoza; D Díaz; J Marcazzó. Synthesis of MgB4O7:Dy3+and Thermoluminescent Characteristics at Low Doses of Beta Radiation. J. Nucl. Phy. Mat. Sci. Rad. A. 20186, 71-76.

Effect of the Target Size in the Calculation of the Energy Deposited Using PENELOPE Code

 

  • B. Leal-AcevedoInstitute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico
  • P.G. Reyes-RomeroScience Facultad, Autonomous University of the State Mexico, 100 Instituto Literario avenue, 50000 Toluca. Mexico
  • F. CastilloSpectroscopy Laboratory, Institute of Physical Sciences, National Autonomous University of Mexico (UNAM), PO Box 48-3, 62251Cuernavaca Morelos, Mexico
  • I. GamboadebuenInstitute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico
Keywords: Specific energy, Linear energy, PENELOPE code

Abstract

The specific and linear energy was calculated in target sizes of 10 μm, 5 μm, 1 μm, 60 nm, 40nm and 20 nm by taking into account the contribution of the primary photon beams and the electrons generated by them in LiF: Mg, Ti (TLD-100). The simulations were carried out by the code PENELOPE 2011. Using different histories of primary particles, for each energy beams the mean deposited energy is the same, but to achieve a statistical deviation lower than 1% the value of 108was fixed. We find that setting the values C1 = 0.1 C2 = 0.1 and Wcc = Wcr = 50 eV the time of simulation decreases around the 25%. The uncertainties (1 SD) in the specific energy increases with energy for all target sizes and decreases with target size, with values from 1.7 to 94% for 20 nm and between 0.1 and 0.8% for 10 μm. As expected, the specific and linear energies decrease with target size but not in a geometrical behavior.


References

M. Bernal and J. Liendo , Med Phys 36, 620–625, (2009). https://doi.org/10.1118/1.3056457

A. Kellerer and D. Chmelevsky, Concepts of microdosimetry, I. Quantities. Radiat Environ Biophys 12, 61–69, (1975). https://doi.org/10.1007/BF02339810

A. Kellerer and D. Chmelevsky, Radiat Environ Biophys 12, 205–216 (1975). https://doi.org/10.1007/BF01327348

P. Olko, Radiat Prot Dosimetry 65, 151–158, (1996). https://doi.org/10.1093/oxfordjournals.rpd.a031610

P. Olko, Henryk Niewodniczaski Institute of Nuclear Physics. (2002).

P. Olko, P. Bilski, M. Budzanowski, L. Czopyk, J. Swakon, et al., Radiat Prot Dosimetry 122, 378–381, (2006). https://doi.org/10.1093/rpd/ncl46

H. Rossi, Radiat Environ Biophys 17, 29–40, (1979). https://doi.org/10.1007/BF01323118

F. Salvat, J. M. Fernández-Varea and J. Sempau, PENELOPE-2011: A Code System for Monte Carlo Simulation of Electron and Photon Transport (No. NEA/NSC/DOC (2011 5). In Nuclear Energy Agency. Workshop Proceedings. Barcelona, (2011).

B. Scott and H. Schöllnberger, Radiat Prot Dosimetry 91, 377–384, (2000). https://doi.org/10.1093/oxfordjournals.rpd.a033247

F. Villegas, N. Tilly and A. Ahnesjö, Phys Med Biol 58, 6149–6162, (2013).

F. Villegas, N. Tilly, G. Bäckström, A. Ahnesjö, Phys Med Biol 59, 5531–5543, (2014). https://doi.org/10.1088/0031-9155/59/18/5531


Issue


How to Cite
B. Leal-Acevedo; P.G. Reyes-Romero; F. Castillo; I. Gamboadebuen. Effect of the Target Size in the Calculation of the Energy Deposited Using PENELOPE Code. J. Nucl. Phy. Mat. Sci. Rad. A. 20186, 67-70.

Analysis of the Energy Deposit in the Air by Radiation of Alpha Particles Emitted by the Water of a Spring Through the Geant4 Software

 

  • A Lima FloresFaculty of Physical Mathematical Sciences, Meritorious Autonomous University of Puebla (BUAP), San Claudio Avenue and 18th south street, Puebla 72570, Mexico
  • R Palomino-MerinoFaculty of Physical Mathematical Sciences, Meritorious Autonomous University of Puebla (BUAP), San Claudio Avenue and 18th south street, Puebla 72570, Mexico
  • E Moreno-BarbosaFaculty of Physical Mathematical Sciences, Meritorious Autonomous University of Puebla (BUAP), San Claudio Avenue and 18th south street, Puebla 72570, Mexico
  • JN Domínguez-KondoFaculty of Physical Mathematical Sciences, Meritorious Autonomous University of Puebla (BUAP), San Claudio Avenue and 18th south street, Puebla 72570, Mexico
  • VM CastanoCenter for Applied Physics and Advanced Technology, National Autonomous University of Mexico, Juriquilla Boulevard number 3001, 76230 Santiago De Querétaro, Querétaro, Mexico
  • AC Chavarría SánchezInstitute of Physics, National Autonomous University of Mexico (UNAM), 04520 Mexico City, Mexico
  • JI GolzarriInstitute of Physics, National Autonomous University of Mexico (UNAM), 04520 Mexico City, Mexico
  • G EspinosaInstitute of Physics, National Autonomous University of Mexico (UNAM), 04520 Mexico City, Mexico
Keywords: Radon 222 in spring water, radiological risk assessment, geant4 energy deposition

Abstract

This work presents the development of an analysis of the potential radiological risk generated by alpha particles emitted by radon-222, content in a spring water, for the population that usually swims in the place and for the people who live near this spring. This spring is located in the state of Puebla. Several measurements in the water of this place by researchers from IF-UNAM showed that it contains an average radon concentration level of 70 Bq/m3. To evaluate this radiological risk, it has been developed a computational simulation to know the area and the height where the alpha particles deposit their energy to the medium, as well as the amount of energy that they transfer. This simulation was developed in the Geant4 scientific software and the calculations were executed in the supercomputer of the Laboratorio Nacional de Supercomputo del Sureste de Mexico of the BUAP. The results show that the energy deposit occurs within the superficial limits of the spring, between 7 and 8 meters high. This deposited is not only by the alpha particles, but also by the secondary particles that are generated by the interaction of alpha particles with the environment. Based on these results, it is confirmed that there is no radiological risk by energy deposit by alpha particles for the people.


References

S. Agostinelliae, J. Allisonas, K. Amakoe, J. Apostolakisa, H. Araujoaj, et al., Geant4—a simulation toolkit. Nucl. Instrum. Meth. A., 506(3), 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

K. Amakoa, S. Guatellib, V. Ivanchenckoc, M. Maired, B. Mascialino, et al., Geant4 and its validation. Nucl. Phys. B Proc. Suppl., 150, 44–49 (2006). https://doi.org/10.1016/j.nuclphysbps.2004.10.083

I. Antcheva M. Ballintijn, B. Bellenot, M. Biskup, R. Brun, et al., Comput. Phys. Commun., 180(12), 2499– 2512 (2009). https://doi.org/10.1016/j.cpc.2009.08.005

A. Auvinen, Int. J. Cancer, 114(1), 109–113 (2005). https://doi.org/10.1002/ijc.20680

C. R. Cothern, J. E. Smith, Environmental Radon. New York, NY: Springer Science + Business Media, LLC (1987). https://doi.org/10.1007/978-1-4899-0473-7

E. J. Hahn, Y. Gokun, W. M. Andrews, B. L. Overfield, H. Robertson, et al., Preventive Medicine Reports, 2, 342–346 (2015). https://doi.org/10.1016/j.pmedr.2015.04.009


Issue


How to Cite
A Lima Flores; R Palomino-Merino; E Moreno-Barbosa; JN Domínguez-Kondo; VM Castano; AC Chavarría Sánchez; JI Golzarri; G Espinosa. Analysis of the Energy Deposit in the Air by Radiation of Alpha Particles Emitted by the Water of a Spring Through the Geant4 Software. J. Nucl. Phy. Mat. Sci. Rad. A. 20186, 61-66.

Improvements to the X-ray Spectrometer at the Aerosol Laboratory, Instituto de Física, UNAM

 

  • L V Mejía-PonceInstitute of Physics, National Autonomous University of Mexico (UNAM), PO Box 20-364, 01000 Mexico City, Mexico
  • A E Hernández-LópezInstitute of Physics, National Autonomous University of Mexico (UNAM), PO Box 20-364, 01000 Mexico City, Mexico
  • S Reynoso-CrucesInstitute of Physics, National Autonomous University of Mexico (UNAM), PO Box 20-364, 01000 Mexico City, Mexico
  • J C PinedaInstitute of Physics, National Autonomous University of Mexico (UNAM), PO Box 20-364, 01000 Mexico City, Mexico
  • J A Mendoza-FloresInstitute of Physics, National Autonomous University of Mexico (UNAM), PO Box 20-364, 01000 Mexico City, Mexico
  • J MirandaInstitute of Physics, National Autonomous University of Mexico (UNAM), PO Box 20-364, 01000 Mexico City, Mexico
Keywords: X-ray fluorescence analysis, Silicon DriftDetector SDD, chemical composition of atmospheric aerosols, Standard Reference Material 2783

Abstract

Due to the demands of better (accurate and precise) analytical results using X-ray Fluorescence (XRF) at the Aerosol Laboratory, Instituto de Física, UNAM, it was necessary to carry out improvements in instrumentation and analytical procedures in the x-ray spectrometer located in this facility. A new turbomolecular vacuum system was installed, which allows reaching the working pressure in a shorter time. Characteristic x-rays are registered with a Silicon Drift Detector, or SDD, (8 mm thick Be window, 140 eV at 5.9 keV resolution), working directly in a high-vacuum, permitting the detection of x-rays with energies as low as 1 keV (Na Ka) and higher counting rates than in the past. Due to the interference produced by the Rh L x-rays emitted by the tube normally used for atmospheric and food analysis with Cl K x-rays, another tube with a W anode was mounted in the spectrometer to avoid this interference, with the possibility to select operation with any of these tubes. Examples of applications in atmospheric aerosols and other samples are presented, to demonstrate the enhanced function of the spectrometer. Other future modifications are also explained.


References

Z. B. Alfassi, Non-destructive Elemental Analysis.Oxford: Blackwell Science, Ed. (2001).

R. E. Van Grieken, A. A. Markowicz, Handbook of X-raySpectrometry. New York: Marcel Dekker, Eds. (2002).

A. A. Espinosa, et al., Instrumentation Science andTechnology40(3), 603–617 (2012).https://doi.org/10.1080/10739149.2012.693560

R. V. Díaz, J. López-Monroy, J. Miranda, A. A.Espinosa, Nuclear Instruments and Methods in PhysicsResearch Section B: Beam Interactions with Materials and Atoms, 318(1), 135-138 (2014).https://doi.org/10.1016/j.nimb.2013.05.095

Romero-Dávila, E. J. Miranda, J. C. Pineda, AIPConference Proceedings1671, paper 020006 (2015).

Manual for QXAS. Vienna: International AtomicEnergy Agency (IAEA) (1995).

M. C. Hernández, et al., Journal of Nuclear Physics,Material Sciences, Radiation and Applications,5(1),25–34 (2017).https://doi.org/10.15415/jnp.2017.51003


Issue


How to Cite
L V Mejía-Ponce; A E Hernández-López; S Reynoso-Cruces; J C Pineda; J A Mendoza-Flores; J Miranda. Improvements to the X-Ray Spectrometer at the Aerosol Laboratory, Instituto De Física, UNAM. J. Nucl. Phy. Mat. Sci. Rad. A. 20186, 57-60.

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...