Showing posts with label Agent-based model. Show all posts
Showing posts with label Agent-based model. Show all posts

Monday, 7 September 2020

Radiation Induced Reactions of Succinic Acid in Aqueous Solution: An Agent-Based Model

 

  • Ana Leonor Rivera
    Institute of Nuclear Sciences, National Autonomous University of Mexico, Coyoacan-04510, CDMX, Mexico; Center for Complexity Sciences, National Autonomous University of Mexico
  • Sergio Ramos-Beltran
    Institute of Nuclear Sciences, National Autonomous University of Mexico, Coyoacan-04510, CDMX, Mexico
  • Alicia Negrón-Mendoza
    Institute of Nuclear Sciences, National Autonomous University of Mexico, Coyoacan-04510, CDMX, Mexico
Keywords: Radiation induced chemical reactions, Succinic Acid, Kinetics of reactions, Agent-based model

Abstract

An approach to studying the formation of critical bio-organic compounds in the early Earth is to simulate in the laboratory possible processes that may occur in primitive scenarios. In this context, it can be studied the evolution of succinic acid in an aqueous media exposed to gamma radiation, as starting material produced more complex prebiotic molecules. To describe the products generated by the interaction of the different elements under radiation, there is a mathematical model that considers chemical reactions as nonlinear ordinary differential equations based on the mass balance of all the species, that has been implemented here by an agent-based model. In this simulation, each chemical species involved is considered as an agent that can interact with other species with known reaction rates, and the radiation is taken as a factor that promotes product formation. The results from the agentbased model are compared with the molar concentrations of succinic acid, and its products obtained in the lab. Simulation shows the exponential decomposition of succinic acid due to gamma radiation at room temperature in agreement with the laboratory model.

 

References

A. Negrón-Mendoza and C. Ponnamperuma, Photochem. Photobiol. 36, 595 (1982). https://doi.org/10.1111/j.1751-1097.1982.tb04421.x

A. Negrón-Mendoza, G. Albarran, S. Ramos, and E. Chacon, J. Biol. Phys. 20, 71 (1995). https://doi.org/10.1007/BF00700422

M. Colín-García, A. Negrón-Mendoza, and S. Ramos-Bernal, Astrobiol. 9, 279 (2009). https://doi.org/10.1089/ast.2006.0117

S. Castillo, A. Negrón-Mendoza, Z. D. Draganic, and I. G. Draganic, Rad. Phys. Chem. 26, 437 (1985). https://doi.org/10.1016/0146-5724(85)90232-8

J. Cruz-Castañeda, A. Negrón-Mendoza, D. Frías, M. Colín-García, et al., J. Radioanal. Nuc. Chem. 304, 219 (2015). https://doi.org/10.1007/s10967-014-3711-z

S. L. Miller and H. C. Urey, Science 130, 245 (1959). https://doi.org/10.1126/science.130.3370.245

G. U. Yuen and K. A. Kvenvolden, Nature 246, 301 (1973). https://doi.org/10.1038/246301a0

J. G. Lawless, B. Zeiman, W. E. Pereira, R. E. Summons and A. M. Duffield, Nature 251, 40 (1974). https://doi.org/10.1038/251040a0

A. Negrón-Mendoza and C. Ponnamperuma, Origins of Life 279, 191 (1976). https://doi.org/10.1007/BF00926937

G. Sanchez-Mejorada, D. Frias, A. Negrón-Mendoza and S. Ramos-Bernal, Radiat. Meas. 43, 287 (2008). https://doi.org/10.1016/j.radmeas.2007.11.038

V. P. Zhdanov, Surface Sci. Rep. 45, 231 (2002). https://doi.org/10.1016/S0167-5729(01)00023-1

A. L. Rivera, S. Ramos-Bernal and A. Negrón-Mendoza, J. Nucl. Phys. Mat. Sci. Rad. A. 6, 93 (2018). https://doi.org/10.15415/jnp.2018.61016

A. L. Rivera, S. Ramos-Bernal, and A. Negrón-Mendoza, J. Nucl. Phys. Mat. Sci. Rad. A. 5, 15 (2017). https://doi.org/10.15415/jnp.2017.51002

A. L. Rivera, S. Ramos-Bernal, and A. Negrón-Mendoza, J. Nucl. Phys. Mat. Sci. Rad. A. 4, 149 (2016). https://doi.org/10.15415/jnp.2016.41015

I. G. Draganic and Z. D. Draganic, The radiation chemistry of water. (Academic Press, New York, pp 204-206, 1971).

A. L. Meléndez-López, S. Ramos-Bernal, and M. L. Ramírez-Vázquez, AIP Conf. Proc. 1607, 111 (2014). https://doi.org/10.1063/1.4890710

A. Negrón-Mendoza, M. Colín-García, and S. Ramos-Bernal, J. Radioanal. Nuc. Chem. 318, 2279 (2018). https://doi.org/10.1007/s10967-018-6197-2

 

Issue
 
 
How to Cite
Ana Leonor Rivera; Sergio Ramos-Beltran; Alicia Negrón-Mendoza. Radiation Induced Reactions of Succinic Acid in Aqueous Solution: An Agent-Based Model. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 117-121.
 

Friday, 4 September 2020

Agent Based Model of the Cytosine Radiation Induced Reaction

 

  • A L Rivera
    Institute of Nuclear Sciences. National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico; Complexity Science Center, National Autonomous University of Mexico (UNAM)
  • S Ramos-Beltran
    Complexity Science Center, National Autonomous University of Mexico (UNAM)
  • A Paredes-Arriaga
    Institute of Nuclear Sciences. National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico; Sciences Faculty, National Autonomous University of Mexico (UNAM), 04510 Mexico City, Mexico
  • A Negron-Mendoza
    Institute of Nuclear Sciences. National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico

Keywords:
Radiation induced chemical reactions, Cytosine, Kinetics of reactions, Agent-based model

Abstract

The stability of cytosine in aqueous solution was studied in the laboratory, simulating prebiotic conditions and using gamma radiation as an energy source, to describe cytosine behavior under radiation. For a better understanding of the radiation-induced processes, we proposed a mathematical model that considers chemical reactions as nonlinear ordinary differential equations. The radiolysis can be computationally simulated by an agent-based model, wherein each chemical species involved is considered to be an agent that can interact with other species with known reaction rates. The radiation is contemplated as a factor that promotes product formation/destruction, and the temperature determines the diffusion speed of the agents. With this model, we reproduce the changes in cytosine concentration obtained in the laboratory under different irradiation conditions.

 

References

M. Colín-García, A. Negrón-Mendoza, S. RamosBernal, International Journal of Astrobiology, 9, 279– 288, (2009). http://dx.doi.org/10.1089/ast.2006.0117

H. G. Hill, J. A. Nuth, Astrobiology, 3(2), 291–304, (2003). https://doi.org/10.1089/153110703769016389

A. Negrón-Mendoza, C. Ponnamperuma, Photochemistry and Photobiology, 36(5), 595–597, (1982). https://doi.org/10.1111/j.1751-1097.1982.tb04421.x

A. Negrón-Mendoza, G. Albarran, S. Ramos, E. Chacon, Journal of Biological Physics, 20(1), 71–76, (1995). http:/dx.doi.org/10.1007/BF00700422.

S. Castillo, A. Negrón-Mendoza, Z. D. Draganic, I. G. Draganic, Radiation Physics and Chemistry, 26, 437–443, (1985). https://doi.org/10.1016/0146-5724(85)90232-8

J. Cruz-Casta-eda, A. Negrón-Mendoza, D. Frías, M. Colín-García, A. Heredia, et al., Journal of Radioanalytical and Nuclear Chemistry, 304(1), 219–225, (2015). https://doi.org/10.1007/s10967-014-3711-z

S. L. Miller, Science, 117(3046), 528–529, (1953). https://doi.org/10.1126/science.117.3046.528

W. Gilbert, Nature, 319(6055), 618, (1986). https://doi.org/10.1038/319618a0

G. Sanchez-Mejorada, D. Frias, A. Negrón-Mendoza, S. Ramos-Bernal, Radiation Measurements, 43(2), 287–290, (2008). https://doi.org/10.1016/j.radmeas.2007.11.038

V. P. Zhdanov, Surface Science Reports, 45(7), 231–326, (2002). https://doi.org/10.1016/S0167-5729(01)00023-1

A. L. Rivera, S. Ramos-Bernal, A. Negrón-Mendoza, J. Nucl. Phys. Mat. Sci. Rad. A., 5(1), 15–23, (2017). https://doi.org/10.15415/jnp.2017.51002

A. L. Rivera, S. Ramos-Bernal, A. Negrón-Mendoza, J. Nucl. Phys. Mat. Sci. Rad. A., 4(1), 149–157, (2016). https://doi.org/10.15415/jnp.2016.41015

A. A. Berryman, Ecology, 75, 1530–1535, (1992). https://doi.org/10.2307/1940005

A. Paredes Arriaga, Estabilidad de la guanina y citosinaendisoluciónacuosa y suspensión con Montmo rillonitasódica: simulaciones de charcasen la tierraprimitive (Stability of guanine and cytosine in aqueous solution and suspension with sodium Montmorillonite: simulations of ponds in the primitive land). Thesis, Universidad Nacional Autónoma de México, Mexico (2018).

A. L. Meléndez-López, S. Ramos-Bernal, M. L. RamírezVázquez, AIP Conference Proceedings 1607, 111, (2014). https://doi.org/10.1063/1.4890710

L. Lang, Absorption spectra in the ultraviolet and visible regions, Vol. 1 (Academic Press, New York, 1961).

 

Issue
 
 
 
How to Cite
A L Rivera; S Ramos-Beltran; A Paredes-Arriaga; A Negron-Mendoza. Agent Based Model of the Cytosine Radiation Induced Reaction. J. Nucl. Phy. Mat. Sci. Rad. A. 2018, 6, 93-97.
 

Monday, 6 August 2018

Agent Based Model of the Cytosine Radiation Induced Reaction

 

  • A L Rivera
    Institute of Nuclear Sciences. National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico; Complexity Science Center, National Autonomous University of Mexico (UNAM)
  • S Ramos-Beltran
    Complexity Science Center, National Autonomous University of Mexico (UNAM)
  • A Paredes-Arriaga
    Institute of Nuclear Sciences. National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico; Sciences Faculty, National Autonomous University of Mexico (UNAM), 04510 Mexico City, Mexico
  • A Negron-Mendoza
    Institute of Nuclear Sciences. National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico
Keywords: Radiation induced chemical reactions, Cytosine, Kinetics of reactions, Agent-based model

Abstract

The stability of cytosine in aqueous solution was studied in the laboratory, simulating prebiotic conditions and using gamma radiation as an energy source, to describe cytosine behavior under radiation. For a better understanding of the radiation-induced processes, we proposed a mathematical model that considers chemical reactions as nonlinear ordinary differential equations. The radiolysis can be computationally simulated by an agent-based model, wherein each chemical species involved is considered to be an agent that can interact with other species with known reaction rates. The radiation is contemplated as a factor that promotes product formation/destruction, and the temperature determines the diffusion speed of the agents. With this model, we reproduce the changes in cytosine concentration obtained in the laboratory under different irradiation conditions.

 

References

M. Colín-García, A. Negrón-Mendoza, S. RamosBernal, International Journal of Astrobiology, 9, 279– 288, (2009). http://dx.doi.org/10.1089/ast.2006.0117

H. G. Hill, J. A. Nuth, Astrobiology, 3(2), 291–304, (2003). https://doi.org/10.1089/153110703769016389

A. Negrón-Mendoza, C. Ponnamperuma, Photochemistry and Photobiology, 36(5), 595–597, (1982). https://doi.org/10.1111/j.1751-1097.1982.tb04421.x

A. Negrón-Mendoza, G. Albarran, S. Ramos, E. Chacon, Journal of Biological Physics, 20(1), 71–76, (1995). http:/dx.doi.org/10.1007/BF00700422.

S. Castillo, A. Negrón-Mendoza, Z. D. Draganic, I. G. Draganic, Radiation Physics and Chemistry, 26, 437–443, (1985). https://doi.org/10.1016/0146-5724(85)90232-8

J. Cruz-Casta-eda, A. Negrón-Mendoza, D. Frías, M. Colín-García, A. Heredia, et al., Journal of Radioanalytical and Nuclear Chemistry, 304(1), 219–225, (2015). https://doi.org/10.1007/s10967-014-3711-z

S. L. Miller, Science, 117(3046), 528–529, (1953). https://doi.org/10.1126/science.117.3046.528

W. Gilbert, Nature, 319(6055), 618, (1986). https://doi.org/10.1038/319618a0

G. Sanchez-Mejorada, D. Frias, A. Negrón-Mendoza, S. Ramos-Bernal, Radiation Measurements, 43(2), 287–290, (2008). https://doi.org/10.1016/j.radmeas.2007.11.038

V. P. Zhdanov, Surface Science Reports, 45(7), 231–326, (2002). https://doi.org/10.1016/S0167-5729(01)00023-1

A. L. Rivera, S. Ramos-Bernal, A. Negrón-Mendoza, J. Nucl. Phys. Mat. Sci. Rad. A., 5(1), 15–23, (2017). https://doi.org/10.15415/jnp.2017.51002

A. L. Rivera, S. Ramos-Bernal, A. Negrón-Mendoza, J. Nucl. Phys. Mat. Sci. Rad. A., 4(1), 149–157, (2016). https://doi.org/10.15415/jnp.2016.41015

A. A. Berryman, Ecology, 75, 1530–1535, (1992). https://doi.org/10.2307/1940005

A. Paredes Arriaga, Estabilidad de la guanina y citosinaendisoluciónacuosa y suspensión con Montmo rillonitasódica: simulaciones de charcasen la tierraprimitive (Stability of guanine and cytosine in aqueous solution and suspension with sodium Montmorillonite: simulations of ponds in the primitive land). Thesis, Universidad Nacional Autónoma de México, Mexico (2018).

A. L. Meléndez-López, S. Ramos-Bernal, M. L. RamírezVázquez, AIP Conference Proceedings 1607, 111, (2014). https://doi.org/10.1063/1.4890710

L. Lang, Absorption spectra in the ultraviolet and visible regions, Vol. 1 (Academic Press, New York, 1961). 


Issue
 
 
How to Cite
A L Rivera; S Ramos-Beltran; A Paredes-Arriaga; A Negron-Mendoza. Agent Based Model of the Cytosine Radiation Induced Reaction. J. Nucl. Phy. Mat. Sci. Rad. A. 2018, 6, 93-97.
 

 

 

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...