Tuesday 8 September 2020

Study of CT Images Processing with the Implementation of MLEM Algorithm using CUDA on NVIDIA’S GPU Framework

 

  • T. A. Valencia-Pérez
    Faculty of Physical Sciences Mathematics Benemérita Universidad Autónoma de Puebla, Avenida San Claudio y 18 Sur, Colonia San Manuel, Building FM2-203, Ciudad Universitaria, C.P. 72570, Puebla, Mexico
  • J. M. Hernández-López
    Faculty of Physical Sciences Mathematics Benemérita Universidad Autónoma de Puebla, Avenida San Claudio y 18 Sur, Colonia San Manuel, Building FM2-203, Ciudad Universitaria, C.P. 72570, Puebla, Mexico
  • E. Moreno-Barbosa
    Faculty of Physical Sciences Mathematics Benemérita Universidad Autónoma de Puebla, Avenida San Claudio y 18 Sur, Colonia San Manuel, Building FM2-203, Ciudad Universitaria, C.P. 72570, Puebla, Mexico
  • B. de Celis-Alonso
    Faculty of Physical Sciences Mathematics Benemérita Universidad Autónoma de Puebla, Avenida San Claudio y 18 Sur, Colonia San Manuel, Building FM2-203, Ciudad Universitaria, C.P. 72570, Puebla, Mexico
Keywords: Computed tomography, Algorithms, GPU, Reconstruction, Image quality

Abstract

In medicine, the acquisition process in Computed Tomography Images (CT) is obtained by a reconstruction algorithm. The classical method for image reconstruction is the Filtered Back Projection (FBP). This method is fast and simple but does not use any statistical information about the measurements. The appearance of artifacts and its low spatial resolution in reconstructed images must be considered. Furthermore, the FBP requires of optimal conditions of the projections and complete sets of data. In this paper a methodology to accelerate acquisition process for CT based on the Maximum Likelihood Estimation Method (MLEM) algorithm is presented. This statistical iterative reconstruction algorithm uses a GPU Programming Paradigms and was compared with sequential algorithms in which the reconstruction time was reduced by up to 3 orders of magnitude while preserving image quality. Furthermore, they showed a good performance when compared with reconstruction methods provided by commercial software. The system, which would consist exclusively of a commercial laptop and GPU could be used as a fast, portable, simple and cheap image reconstruction platform in the future.

 

References

S. C. Bushong, Manual de radiología para técnicos: Física, biología y protección radiológica. Elsevier, 2010.

Health at a Glance 2017. OECD Publishing, 2017. https://doi.org/10.1787/19991312

T. M. Buzug, Computed Tomography: From Photon Statistics to Modern Cone-Beam CT. Springer, Berlin, Heidelberg, 2008.

K. Peace et al., J. Neurosci. Nurs. 42, 109, 2010. https://doi.org/10.1097/JNN.0b013e3181ce5c5b

L. A. Feldkamp, L. C. Davis and J. W. Kress, J. Opt. Soc. Am. 1, 612 (1984). https://doi.org/10.1364/JOSAA.1.000612

A. C. Kak, M. Slaney, G. Wang, Med. Phys. 29, 107 (2002). https://doi.org/10.1118/1.1455742

S. R. Deans, The Radon Transform and Some of Its Applications. John Wiley & Sons, Inc., 1983.

J. Radon, Akad. Wiss. 69, 262 (1917).

F. Natterer, The Mathematics of Computerized Tomography. Society for Industrial and Applied Mathematics, 2001. https://doi.org/10.1137/1.9780898719284

B. F. Hutton, J. Nuyts, Y. H. Zaidi, “Iterative Reconstruction Methods”, en Quantitative Analysis in Nuclear Medicine Imaging, H. Zaidi, Ed. Boston, MA: Springer US, 2006, pp. 107–14. https://doi.org/10.1007/0-387-25444-7_4

G. L. Zeng, Medical Image Reconstruction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.

J. Hsieh, B. Nett, Z. Yu, K. Sauer, J.-B. Thibault, C. A. Bouman, Curr. Radiol. Rep. 1, 39 (2013). https://doi.org/10.1007/s40134-012-0003-7

L.A. Shepp Y. Vardi, IEEE Trans. Med. Imaging 1, 113 (1982). https://doi.org/10.1109/TMI.1982.4307558

H. Shi, S. Luo, Z. Yang, G. Wu, PLoS One 10, 1 (2015). https://doi.org/10.1371/journal.pone.0138498

S. Vandenberghe et al., Computerized Medical Imaging and Graphics 25, 105 (2001). https://doi.org/10.1016/S0895-6111(00)00060-4

L. L. Geyer et al., Radiology 276, 339 (2015). https://doi.org/10.1148/radiol.2015132766

S. Cook, CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs, núm. 1. 2013.

J. Sanders, E. Kandrot, CUDA by Example: An Introduction to General-Purpose GPU Programming, 1st ed. Addison-Wesley Professional, 2010.

M. Schellmann et al., J. Supercomput. 57, 151 (2011). https://doi.org/10.1007/s11227-010-0397-z

R. Whitrow, OpenGL Graphics Through Applications, 1a ed. Springer Publishing Company, Incorporated, 2008.

GNU Project, “GCC, the GNU Compiler Collection”. 1987.

NVIDIA, “GPU-Accelerated applications”. 2019.

S. Che et al., J. Parallel Distrib. Comput. 68, 1370 (2008). https://doi.org/10.1016/j.jpdc.2008.05.014

A. Eklund, P. Dufort, D. Forsberg and S. M. LaConte, Med. Image Anal. 17, 1073 (2013). https://doi.org/10.1016/j.media.2013.05.008

T. Kalaiselvi, P. Sriramakrishnan and K. Somasundaram, Informatics Med. Unlocked 9, 133 (2017). https://doi.org/10.1016/j.imu.2017.08.001

N. Tatarchuk, J. Shopf and C. DeCoro, J. Parallel Distrib. Comput. 68, 1319 (2008). https://doi.org/10.1016/j.jpdc.2008.06.011

L. A. Flores, V. Vidal, P. Mayo, F. Rodenas and G. Verdú, Procedia Comput. Sci. 18, 1412 (2013). https://doi.org/10.1016/j.procs.2013.05.308

M.A. Belzunce, C.A. Verrastro, E. Venialgo and I. M. Cohen, Open Med. Imaging J. 108 (2012). https://doi.org/10.2174/1874347101206010108

G. Pratx and L. Xing, Med. Phys. 38, 2685 (2011). https://doi.org/10.1118/1.3578605

K. Lange, M. Bahn and R. Little, IEEE Trans. Med. Imaging. 6, 106 (1987). https://doi.org/10.1109/TMI.1987.4307810

E. S. Gopi, Digital Signal Processing for Medical Imaging Using Matlab. New York, NY, USA: Springer, 2013. https://doi.org/10.1007/978-1-4614-3140-4

V. Hemelryck Tessa, W. Sarah, G. Maggie, B. Kees Joost, y J. Sijbers, “ITERATIVE RECONSTRUCTION ALGORITHMS The implementation of iterative reconstruction algorithms in MATLAB”, 2007.

L. Han, “Tools for 2-D Tomographic Reconstruction”, GitHub repository. GitHub, 2017.

A. Biguri, M. Dosanjh, S. Hancock and M. Soleimani, Biomed. Phys. Eng. Express 2, 55010 (2016). https://doi.org/10.1088/2057-1976/2/5/055010

E. Y. Sidky and X. Pan, Phys. Med. Biol. 53, 4777 (2008). https://doi.org/10.1088/0031-9155/53/17/021

I. Intel Corporation Willow Garage, “Open Source Computer Vision”. 2000.

K. Clark et al., J. Digit. Imaging. 26, 1045 (2013). https://doi.org/10.1007/s10278-013-9622-7

 

 

How to Cite

T. A. Valencia-Pérez; J. M. Hernández-López; E. Moreno-Barbosa; B. de Celis-Alonso. Study of CT Images Processing With the Implementation of MLEM Algorithm Using CUDA on NVIDIA’S GPU Framework. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 165-171.

Monday 7 September 2020

Characterizing a Mini Gamma Detector

 

  • E. Márquez-Quintos
    Faculty of Mathematical Physical Sciences, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Mexico
  • E. Moreno-Barbosa
    Faculty of Mathematical Physical Sciences, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Mexico
  • J. E. Espinosa
    Faculty of Mathematical Physical Sciences, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Mexico
  • Benito de Celis Alonso
    Faculty of Mathematical Physical Sciences, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Mexico
  • Margarita Amaro Aranda
    Faculty of Electronics Sciences, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Mexico
  • R. Palomino Merino
    Faculty of Mathematical Physical Sciences, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Mexico
Keywords: Gamma ray, Crystal Scintillator, Spectrophotometer, Calibration

Abstract

There are several types of gamma radiation detectors, which have different characteristics depending on its use. We designed and instrumented a gamma detector for low energies of a small and portable size to obtain spectrum from radioactive sources and from that analyze each spectrum. This instrument basically consists of a scintillator crystal coupled to a SiPM this in turn coupled to a PCB card designed with capacitors and resistors for a better signal, a voltage source of 29 volts. For signal acquisition the system must be connected to an oscilloscope this in turn is controlled by a script developed in Python. For the calibration radioactive isotopes with the same dimensions were used, caesium-137 (Cs-137), cobalto-60 (Co-60), sodium-22 (Na-22) and manganese-54 (Mn-54) as gamma ray emission.

 

References

Knoll, Glenn F. Radiation detection and measurement. John Wiley & Sons, 2010.

V. Saveliev, and V. Golovin, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 442, 223 (2000). https://doi.org/10.1016/S0168-9002(99)01225-5

M.T. Madsen, Journal of Nuclear Medicine 48, 661 (2007). https://doi.org/10.2967/jnumed.106.032680

O. H. Nestor and C. Y. Huang, IEEE Transactions on Nuclear Science 22, 68 (1975). https://doi.org/10.1109/TNS.1975.4327617

Root Analysis Framework, http://root.cern.ch

C. Jackson et al., Proceedings 9359, Optical Components and Materials XII; 93591C (2015). https://doi.org/10.1117/12.2076898

L. Schlattauer et al., European Journal of Physics 38, 055806 (2017). https://doi.org/10.1088/1361-6404/aa7a7a

 

Issue
 
 
How to Cite
E. Márquez-Quintos; E. Moreno-Barbosa; J. E. Espinosa; Benito de Celis Alonso; Margarita Amaro Aranda; R. Palomino Merino. Characterizing a Mini Gamma Detector. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 159-163.
 

 

Analysis of DDM into Gamma Radiation

 

  • C. Arellano-Celiz
    Faculty of Mathematical Physical Sciences, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 1152, Puebla, Pue.-72000, Mexico
  • A. Avilez-López
    Faculty of Mathematical Physical Sciences, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 1152, Puebla, Pue.-72000, Mexico
  • J. E. Barradas-Guevara
    Faculty of Mathematical Physical Sciences, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 1152, Puebla, Pue.-72000, Mexico
  • O. Félix-Beltrán
    Faculty of Electronics Sciences, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 542, Puebla, Pue.-72000, Mexico
  • F. González-Canales
    Faculty of Electronics Sciences, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 542, Puebla, Pue.-72000, Mexico
Keywords: Dark matter, Dipolar dark matter, WIMP, Relic density

Abstract

We are interested in the purpose of a dipolar fermionic particle as a viable candidate of Dark Matter (DDM). Then, we study the annihilation of dark matter into photons, considering it as a neutral particle with non-vanishing magnetic (M) and electric (D) dipolar moments. The total annihilation cross section σ(χchi bar → γgamma bar) is computed by starting from a general form of coupling χchi barγ in a framework beyond to Standard Model (BSM). We found that candidates with O(mχ )∽102GeV, D≈10−16 e cm are required in order to satisfy the current cosmic relic density.

 

References

F. Zwicky, Helv. Phys. Acta 6, 110–127 (1933).

V. C. Rubin, J. Burley, A. Kiasatpoor, B. Klock, G. Pease, E. Rutscheidt and C. Smith, Phys 67, 491 (1962). https://doi.org/10.1086/108758

N. Fornengo, Adv. Space Res. 41, 2010 (2008). https://doi.org/10.1016/j.asr.2007.02.067

G. Jungman, M. Kamionkowski, and K. Griest, Phys. Rept. 267, 195 (1996). https://doi.org/10.1016/0370-1573(95)00058-5

M. S. Turner, Phys. Rept. 197, 67 (1990). https://doi.org/10.1016/0370-1573(90)90172-X

G. D. Starkman, A. Gould, R. Esmailzadeh, and S. Dimopoulos, Phys. Rev. D 41, 3594 (1990). https://doi.org/10.1103/PhysRevD.41.3594

E. D. Carlson, M. E. Machacek, and L. J. Hall, The Astrophysical Journal 398, 43 (1992). https://doi.org/10.1086/171833

D. N. Spergel, and P. J. Steinhardt, Phys. Rev. Lett. 84, 3760 (2000). https://doi.org/10.1103/PhysRevLett.84.3760

A. Gould, B. T. Draine, R.W. Romani, and S. Nussinov, Phys. Lett. B 238, 337 (1990). https://doi.org/10.1016/0370-2693(90)91745-W

S. Davidson, S. Hannestad and G. Raffelt, JHEP 05, 003 (2000). https://doi.org/10.1088/1126-6708/2000/05/003

S. L. Dubovsky, D. S. Gorbunov, and G. I. Rubtsov, JETP Lett. 79, 1 (2004). https://doi.org/10.1134/1.1675909

J. H. Ho, Phys. Lett. B 693, 255 (2010). https://doi.org/10.1016/j.physletb.2010.08.035

E. Masso, S. Mohanty, Subhendra and S. Rao, Phys. Rev. D 80, 036009 (2009). https://doi.org/10.1103/PhysRevD.80.036009

S. Profumo, and K. Sigurdson, Phys. Rev. D 75, 023521 (2007). https://doi.org/10.1103/PhysRevD.75.023521

R. R. Caldwell, and M. Kamionkowski, Phys. Rev. D 70, 083501 (2004). https://doi.org/10.1103/PhysRevD.70.083501

N. Aghanim et al. (Planck Collaboration), arXiv:1807.06209 [astro-ph.CO] (2018).

J. H. Heo, Phys. Lett. B 702, 205 (2011). https://doi.org/10.1016/j.physletb.2011.06.088

E. Fermi, and E. Teller, Phys. Rev. 72, 399 (1947). https://doi.org/10.1103/PhysRev.72.399

K. Sigurdson, M. Doran, A. Kurylov, R. R. Caldwell, and M. Kamionkowski, Phys. Rev. D 70, 083501 (2004). https://doi.org/10.1103/PhysRevD.70.083501

N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, and N. Weiner, Phys. Rev. D 79, 015014 (2009). https://doi.org/10.1103/PhysRevD.79.015014

L.Bergström, Reports on Progress in Physics 63, 793 (2000). https://doi.org/10.1088/0034-4885/63/5/2r3

C. Arellano-Celiz, A. Avilez-López, J. E. Barradas-Guevara, and O. Félix-Beltrán, arXiv:1908.05695 [hep-ph].

M. Cannoni, Eur. Phys. J. C 76, 137 (2016), arXiv:1506.07475 [hep-ph]. 

 

 

How to Cite

C. Arellano-Celiz; A. Avilez-López; J. E. Barradas-Guevara; O. Félix-Beltrán; F. González-Canales. Analysis of DDM into Gamma Radiation. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 153-157.

Preliminary Measurements of Be-10/Be-7 Ratio in Rainwater for Atmospheric Transport Analysis

 

  • K. de los Ríos
    Physics Institute, National Autonomous University of Mexico. P.O. Box 20-364, Mexico City, Mexico
  • C. Méndez-García
    CONACyT Lecturers - Physics Institute, National Autonomous University of Mexico. P.O. Box 20-364, Mexico City, Mexico
  • L. Acosta
    Physics Institute, National Autonomous University of Mexico. P.O. Box 20-364, Mexico City, Mexico
  • R. García-Martínez
    Atmosphere Science Center, National Autonomous University of Mexico, Mexico City-04510, Mexico
  • M. A. Martínez-Carrillo
    Science Faculty, National Autonomous University of Mexico, 04510 Mexico City, Mexico
  • M. E. Ortiz
    Physics Institute, National Autonomous University of Mexico. P.O. Box 20-364, Mexico City, Mexico
Keywords: Rainwater, Beryllium-7, Beryllium-10, AMS, HP-Ge

Abstract

The meteoric cosmogenic beryllium has been used as an essential geophysical tracer in the analysis of atmospheric flows and erosion soils since 1960. The first measurements Be-7 and Be-10 concentrations in rainwater from Mexico, have been carried out by using gamma decay spectroscopy and AMS techniques, respectively for each isotope. With this it was possible to report a preliminar value for the Be-10/Be-7 isotopic ratio in such environmental samples. The present work described preliminary results related to rainwater collected at mountain and metropolitan areas. Results are compared with predictions and previous measurements for both radioisotopes, observing a very sensible behavior particularly for the case of Be-7 activities.

References

W. Kutschera, Adv. Phys.: X 1, 570 (2016). https://doi.org/10.1080/23746149.2016.1224603

A. M. Smith, D. Fink, D. Child, V. A. Levchenko, V. I. Morgan, M. Curran, D. M. Etheridge and G. Elliott, Nucl. Instr. and Meth. in Phys. Res. B 172, 847 (2000). https://doi.org/10.1016/S0168-583X(00)00281-0

U. Heikkilä, J. Beer and V. Alfimov, J. Geophys. Res. Atmos 113, 1 (2008). https://doi.org/10.1029/2007JD009160

G. Korschinek, et. al., Nucl. Instr. and Meth. in Phys. Res. B 268, 187 (2010). https://doi.org/10.1016/j.nimb.2009.09.020

J. Chmeleff, F. von Blanckenburg, K. Kossert and D. Jakob, Nucl. Instr. and Meth. in Phys. Res. B 268, 192 (2010). https://doi.org/10.1016/j.nimb.2009.09.012

D. Fink, D. Child, V. A. Levchenko, V. I. Morgan, M. Curran, and A. M. Smith, Nucl. Instr. and Meth. in Phys. Res. B 172, 847 (2000). https://doi.org/10.1016/S0168-583X(00)00281-0

T. Yamagata, S. Sugihara, I. Morinaga, H. Matsuzaki, and H. Nagai, Nucl. Instr. and Meth. in Phys. Res. B 268, 1135 (2010). https://doi.org/10.1016/j.nimb.2009.10.117

H. Nagai, W. Tada, and T. Kobayashi, Instr. and Meth. in Phys. Res. B 172, 796 (2000). https://doi.org/10.1016/S0168-583X(00)00124-5

J. B. Pedro et al., Earth Plan. Sci. Lett. 355–356, 174 (2012). https://doi.org/10.1016/j.epsl.2012.08.038

F. Zhang, B. Zhang, and M. Yang, Atmos. Environ. 77, 178 (2013). https://doi.org/10.1016/j.atmosenv.2013.05.002

E. Gerasopoulos, C. S. Zerefos, C. Papastefanou, P. Zanis, and K. O’Brien, Atmos. Environ. 37, 1745 (2003). https://doi.org/10.1016/S1352-2310(03)00068-2

M. Yoshimori, Adv. Sp. Res. 36, 922 (2005). https://doi.org/10.1016/j.asr.2005.04.093

K. Ori and A. Sakajiri, Update of X ray and Gamma Ray Decay Data Standards for Detector Calibration and other applications. IAEA Pub. (2007).

K. De Los Ríos, C. Méndez-García, S. Padilla, C. Solís, E. Chávez, A. Huerta and L. Acosta. J. ofPhys: Conf. Ser. 1078, 012009 (2018). https://doi.org/10.1088/1742-6596/1078/1/012009

C. G. Méndez-García, et al., J. of Rad. and Nucl. Chem. 322, 1455 (2019). https://doi.org/10.1007/s10967-019-06841-x.

J. M. Kaste and M. Baskaran, Meteoric 7Be and 10Be as process tracers in the environment. In Handbook of environmental isotope geochemistry. Springer, (2012). https://doi.org/10.1007/978-3-642-10637-8_5

M. H. Wiggs, Measurement of Germanium Detector Efficiency, Notre Dame Physics REU (2009).

D. H. Peirson, J. of Geophys. Res. 68, 3831 (1963). https://doi.org/10.1029/JZ068i013p03831

K. K. Turekian L. K. Benninger and E. P. Dion, Adv. Earth. and Sp. Sci. 88, 5411 (1983). https://doi.org/10.1029/JC088iC09p05411

C. Schuler et. al., Adv. Earth. and Sp. Sci. 96, C9 (1991).

M. Baskaran, C. H. Coleman, P. H. Santschi, J. of Geophys. Res. 98, 20555 (1993). https://doi.org/10.1029/93JD02182

P. J. Wallbrink, A. S. Murray, J. of Environ. Rad. 25, 213 (1994). https://doi.org/10.1016/0265-931X(94)90074-4

Y. Ishikawa, H. Murakami, T. Sekine, K. Yoshihara, J. of Environ. Rad. 26, 19 (1995). https://doi.org/10.1016/0265-931X(95)91630-M

C. Ródenas, J. Gómez, L.S. Quindós, P.L. Fernández and J. Soto, Appl.Rad. and Isot. 48, 545 (1997). https://doi.org/10.1016/S0969-8043(96)00295-3

S. Caillet, P.Arpagaus, F. Monna and J. Dominik, J. of Environ. Rad. 53, 241 (2001). https://doi.org/10.1016/S0265-931X(00)00130-2

D. McNearyand M. Baskaran, Adv. Earth. and Sp. Sci. 108, D7 (2003).

J. H. Chao, C. C. Liu, I. C. Cho and H. Niu, Appl. Rad. and Isot. 89, 95 (2014). https://doi.org/10.1016/j.apradiso.2014.02.009

J. Sharib, D. N. F. Ahmad Tugi, N. F. Yusof, M. T. Ishak, NCL Collection Store, inis.iaea.org 48050375 (2015).

A. Taylor, M. J. Keith-Roach, A. R. Iurian, L. Mabit and W. H. Blake, Journal of Environmental Radioactivity 160, 80 (2016). https://doi.org/10.1016/j.jenvrad.2016.04.025

 

 

How to Cite
K. de los Ríos; C. Méndez-García; L. Acosta; R. García-Martínez; M. A. Martínez-Carrillo; M. E. Ortiz. Preliminary Measurements of Be-10/Be-7 Ratio in Rainwater for Atmospheric Transport Analysis. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 145-151.

Behavior of Poly-A onto Kaolin

 

  • María Guadalupe Torres-Duque
    Faculty of Higher Education Iztacala, National Autonomous University of Mexico. Avenida de los Barrios Number 1, Colonia Los Reyes Iztacala, Tlalnepantla, State of Mexico
  • Claudia Camargo-Raya
    Institute of Nuclear Sciences, National Autonomous University of Mexico. Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, Mexico City
  • Alicia Negrón-Mendoza
    Institute of Nuclear Sciences, National Autonomous University of Mexico. Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, Mexico City
  • Sergio Ramos-Bernal
    Institute of Nuclear Sciences, National Autonomous University of Mexico. Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, Mexico City
Keywords: Poly-A, Clays, Kaolin, Chemical evolution

Abstract

A combination of geochemical variables is necessary to explain the origin of life on Earth. Thus, in this work the sorption of Poly-A on a clay mineral (kaolinite) was studied to get an insight about the sorption capacity at different times and pH values, as well as to confirm the capabilities of the clay to protect the sorbate from an external source of ionizing radiation. Poly-A presented a high percentage of sorption in the clay, especially in acidic environments, and this percentage sharply decrease in alkaline media. On the other hand, Poly-A’s recovery was higher in the system with clay, confirming its protection role.

 

References

A. Negrón-Mendoza, S. Ramos-Bernal, M. Colin-García and A. Heredia, Radiation & applications 1, 159 (2016). https://doi.org/10.21175/RadJ.2016.03.030

A. I. Oparin, The origin of life (MacMillan, New York, 1924), p. 109.

S. Chang and N. Lahav, J. Mol. Evol. 8, 357 (1976). https://doi.org/10.1007/BF01739261

J. D. Bernal, The Physical Basis of Life (Routledge y Kegan Paul, London, 1951), p. 364.

W. Gilbert, Nature 319, 618 (1986). https://doi.org/10.1038/319618a0

P. G. Higgs and N. Lehman, Nat. Rev. Genet. 16, 1 (2015). https://doi.org/10.1038/nrg3841

S. Woodson and S. Mount, in The RNA world, edited by R. F. Gesteland, T. R. Cech and J. F. Atkins (Cold Spring Harbor Laboratory Press, USA, 1999), p. 709. https://doi.org/10.1101/cshperspect.a006742

H. Hashizume, Clay Minerals in Nature (Intech Open, London, 2012), p. 197.

H. H. Murray, M. S. Prasad and K. J. Reid, Appl. Clay Sci. 6, 87 (1991). https://doi.org/10.1016/0169-1317(91)90001-P

L. López-Esquivel, A. Negrón-Mendoza, F. Mosqueira and S. Ramos-Bernal, Nucl. Instrum. Meth. A 619, 1 (2010).

J. Ramírez-Carreón, S. Ramos-Bernal and A. Negrón-Mendoza, J Radioanal. Nucl. Chem. 318, 2435 (2018). https://doi.org/10.1007/s10967-018-6264-8

N. Palomino-Aquino and A. Negrón-Mendoza, AIP Publishing 1671, 030007 (2015). https://doi.org/10.1063/1.4927196

L. D. Perezgasga, F. G. Mosqueira, A. Negrón-Mendoza, L. De Pablo-Galán and A. Serrato-Díaz, Orig. Life Evol. Biospheres 35, 91 (2005). https://doi.org/10.1007/s11084-005-0199-0

M. M. Mortland, Advances in Agronomy 22, 75 (1970). https://doi.org/10.1016/S0065-2113(08)60266-7

D. Tunega, G. Haberhauer, M. H. Gerzabek, H. Lischka, Langmuir 181, 139 (2002). https://doi.org/10.1021/la010914e

Negrón-Mendoza and S. Ramos-Bernal, The role of clays in the origin of life. Origins: genesis, evolution and diversity of life (Kluwer Academic Publishers, USA, 2004), 181–194.

E. T. Degens, G. R. Harvey and K. Mopper, Chemical Geology 9, 1 (1972). https://doi.org/10.1016/0009-2541(72)90038-1

 

Issue
 
 
How to Cite
María Guadalupe Torres-Duque; Claudia Camargo-Raya; Alicia Negrón-Mendoza; Sergio Ramos-Bernal. Behavior of Poly-A onto Kaolin. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 139-143.
 

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...