Tuesday, 8 September 2020

Effect of Laser Radiation on Biomolecules

 

  • E. Prieto
    Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cuernavaca-62210, Mexico
  • L. X. Hallado
    Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cuernavaca-62210, Mexico
  • A. Guerrero
    Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cuernavaca-62210, Mexico
  • I. Álvarez
    Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cuernavaca-62210, Mexico
  • C. Cisneros
    Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cuernavaca-62210, Mexico
Keywords: Nitrogenous bases, Ionic fragments, Uracil, Adenine

Abstract

Time of flight laser photoionization has been used to study the response of some molecules of biological interest under laser radiation. One of the questions of great interest today is the effect of radiation on DNA and RNA molecules. Damage to these molecules can be caused directly by radiation or indirectly by secondary electrons created by radiation. As response of the radiation field fragmentation process can occur producing different ions with kinetic energies of a few electron volts. In this paper we present the results of the interaction of 355nm laser with the nitrogen bases adenine(A) and uracil(U) using time-of-flight spectrometry and the comparison of experimental results on the effects of laser radiation in (A) and (U) belonging to two different ring groups, purines and pyrimidines respectively, which are linked to form the AU pair of the RNA.

 

References

A. P. Schuch et al., Fre. Radic. Biol. Med. 107, 110 (2017). https://doi.org/10.1016/j.freeradbiomed.2017.01.029

T. M. Rüngerc and U. P. Kappes, Photodermatol. Photoimmuno. Photomed. 24, 2 (2008). https://doi.org/10.1111/j.1600-0781.2008.00319.x

C Champion, et al., J. of Phys.: Conf. Series. 373, 012004 (2012). https://doi.org/10.1088/1742-6596/373/1/012004

H. Levola et al., Int. J. of Mass Spectrom. 353, 7 (2013). https://doi.org/10.1016/j.ijms.2013.08.008

M. Schwell, et al., Chem. Phys. 353, 145 (2008). https://doi.org/10.1016/j.chemphys.2008.08.009

H.-W. Jochims et al., Chemi. Phy. 314, 263 ( 2005). https://doi.org/10.1016/j.chemphys.2005.03.008

G. F. Joyce, Nature 418, 214 (2002). https://doi.org/10.1038/418214a

O. Ghafur et al, J. Chem. Phys. 149, 034301 (2018). https://doi.org/10.1063/1.5034419

M. A. Rahman and E. Krishnakumara, J. Chem. Phys. 144, 161102 (2016). https://doi.org/10.1063/1.4948412

M. Ryszka et al, Int. J. Mass Spectrom. 396, 48 (2016). https://doi.org/10.1016/j.ijms.2015.12.006

A. Ostroverkh, A. Zavilopulo and Otto Shpenik, Eur. Phys. J. D. 73, 38 (2019). https://doi.org/10.1140/epjd/e2019-90532-3

T. M. Maddern, et al., Int. J. Mass Spectrom. 409, 73 (2016). https://doi.org/10.1016/j.ijms.2016.09.021

L. V. Keldysh, Sov. Soviet Phys. JETP 20, 1307 (1965).

B. Barc, et al., J. Chem. Phys. 139, 244311 (2013). https://doi.org/10.1063/1.4851476

M. J. DeWitt and R. J. Levis, J. Chem. Phys. 110, 11368 (1999). https://doi.org/10.1063/1.479077

L. X. Hallado, et al., J. Nuc. Phys, Mat. Sci. Rad. A. 6, 103 (2018). https://doi.org/10.15415/jnp.2018.61018

 

Issue
 

How to Cite
E. Prieto; L. X. Hallado; A. Guerrero; I. Álvarez; C. Cisneros. Effect of Laser Radiation on Biomolecules. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 123-128.
 

Dose rate profile inside the spent fuel storage pool in case of full capacity storage

 

  • Amr Abdelhady
    Reactors Department, Nuclear Research Center, Atomic Energy Authority, 13759 Cairo, Egypt
Keywords: Radiation dose, Spent fuel, Storage pool

Abstract

This study aims to evaluate the radiation dose rate distribution inside temporary spent fuel open-pool storage. The storage pool is connected to the main pool via transfer channel to facilitate transporting the spent fuel under water that avoiding radiation dose rising in the working area in the reactor. The storage pool was prepared to store 800 spent fuel elements that considering the maximum capacity of storage. The spent fuel elements in the storage pool have different decay times depending on the times of extraction from the core. Assuming conservatively, that the spent fuels of the 5-years decay time would be stored in the lower rack and the spent fuels, of decay time ranged between 10 days and 5 years, would be stored in the upper rack. The dose rate was profiled in the region above the upper rack using SCALE/MAVRIC code applying adjoint flux calculation as a variance reduction technique. The results show that the dose rate values in the region above the pool surface would be lower than the permissible limits.

 

References

A. Abdelhady, Journal of Nuclear Engineering and Radiation Science 4, 021010 (2018). https://doi.org/10.1115/1.4038058

A. Abdelhady, Radiation Protection and Environment 41, 197 (2018). https://doi.org/10.4103/rpe.RPE_67_18

Scale: A Comprehensive Modeling and Simulation Suite for Nuclear Safety Analysis and Design, ORNL/TM-2005/39 Version 6.1, June 2011.

A. G. Croff, ORNL/TM-7175, Oak Ridge National Laboratory, Oak Ridge, TN (1980).

D. E. Peplow, Nucl. Technol. 174, 289 (2011). https://doi.org/10.13182/NT174-289

T. M. Evans, A. S. Stafford, R. N. Slaybaugh and K. T. Clarno, Nucl. Technol. 71, 171 (2010). https://doi.org/10.13182/NT171-171

J. C. Wagner and A. Haghighat, Nucl. Sci. Eng. 128, 186 (1998). https://doi.org/10.13182/NSE98-2

International Commission on Radiation Units and Measurements, ICRU Report 57 (ICRU, Bethesda, 1998).

ICRP (International Commission on Radiation Protection) (1991). Recommendations of the International Commission on Radiation Protection, Pergamon Press, Oxford, England, ICRP Publication 60.

 

 

How to Cite
Abdelhady, A. Dose Rate Profile Inside the Spent Fuel Storage Pool in Case of Full Capacity Storage. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 8, 7-10.

Homogenization Effects of VVER-1000 Fuel Assembly on Criticality Calculations

 

  • Sardar Muhammad Shauddin
    Reactor Physics & Engineering Division, Institute of Nuclear Science & Technology, Atomic Energy Research Establishment, Ganakbari, Savar, Dhaka-1349, Bangladesh
Keywords: Homogenization effect, Criticality calculation, Thermal neutron, Point kinetic parameter, VVER-1000

Abstract

Due to cost effective and simplicity homogeneous reactors have been widely used for experimental and research purposes. Parameters which are difficult to get from a heterogeneous reactor system can be easily obtained from a homogeneous reactor system and can be applied in the heterogeneous reactor system if the major parametric differences are known. In this study, homogenization effects of VVER (Water Water Energetic Reactor)-1000 fuel assembly on neutronic parameters have been analyzed with the universal probabilistic code MCNP (Monte Carlo N-Particle). The infinite multiplication factor (khas been calculated for the reconfigured heterogeneous and homogenous fuel assembly models with 2 w/o U-235 enriched fuel at room temperature. Effect of mixing soluble boron into the moderator/coolant (H2O) has been investigated for both models. Direct and fission detected thermal to higher energy neutron ratio also has been investigated. Relative power distributions of both models have been calculated at critical and supercritical states. Burnup calculations for both the reconfigured cores have been carried out up to 5 years of operation. Effective delayed neutron fraction (βeff) and prompt removal lifetime () also have been evaluated. All the results show significant differences between the two systems except the average relative power.

 

References

A. Hebert and P. Benoist, Nucl. Sci. Eng. 109, 360 (1991). https://doi.org/10.13182/NSE109-360

J. Mondot, Proc. Specialists’ Mtg. Homogenization Methods in Reactor Physics, Lugano, Switzerland, November 13–15, 1978, IAEA-TECDOC-231, p.389, International Atomic Energy Agency (1980).

International Atomic Energy Agency (IAEA), IAEATECDOC-847, Vienna, 1995.

S. M. Shauddin, M. S. Mahmood and M. J. H. Khan, International Journal of Nuclear Energy Science and Technology 11, 175 (2017). https://doi.org/10.1504/IJNEST.2017.085775

Bernard, J. A., “Nuclear Power Plant Dynamics and Control”, Class Notes, Massachusetts Institute of Technology, Massachusetts, 22, 921 (2012).

X-5 Monte Carlo Team, “MCNP – A General Monte Carlo N-Particle Transport Code”, Version 5, LA-UR-03-1987 (revised October 3rd, 2005).

X-5 Monte Carlo Team, “MCNP – A General Monte Carlo N-Particle Transport Code”, Version 5, LACP-03-0245, April 24, 2003 (revised October 3rd, 2005; February 1st, 2008).

R. K. Meulekamp, S. C. van der Marck, Nuclear Science and Engineering 152, 142 (2006). https://doi.org/10.13182/NSE03-107

B. C. Kiedrowski et al., MCNP5-1.60 Feature Enhancement & Manual Clarifications, Los Alamos National Laboratory, LA-UR-10-06217 (2010).

M. B. Chadwick et al., Nuclear Data Sheets 107, 2931 (2006). https://doi.org/10.1016/j.nds.2006.11.001

 

 

How to Cite

Shauddin, S. M. Homogenization Effects of VVER-1000 Fuel Assembly on Criticality Calculations. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 8, 1-6.

A GEANT4 Study of a Gamma-ray Collimation Array

 

  • J A López
    Physics Department, University of Texas at El Paso, El Paso, Texas, 79968 U.S.A.
  • S S Romero González
    Physics Department, University of Texas at El Paso, El Paso, Texas, 79968 U.S.A.
  • O Hernández Rodríguez
    Physics Department, University of Texas at El Paso, El Paso, Texas, 79968 U.S.A.
  • J Holmes
    Physics Department, Arizona State University, Tempe, Arizona, 85281 U.S.A.
  • R Alarcón
    Physics Department, Arizona State University, Tempe, Arizona, 85281 U.S.A.
Keywords: Proton therapy, Collimators, Gamma rays, GEANT4

Abstract

Proton beam therapy uses high-energy protons to destroy cancer cells which are still uncertain about where in the body they hit. A possible way to answer this question is to detect the gamma rays produced during the irradiation and determine where in the body they are produced. This work investigates the use of collimators to determine where the proton interactions occur. GEANT4 is used to simulate the gamma production of a source interacting with a collimator. Each event simulates a number of gammas obtained as a function of the position along the detector. Repeating for different collimator configurations can thus help determine the best characteristics of a detector device.

References

K. A. Camphausen, R. C. Lawrence, (2009). “Principles of Radiation Therapy”. In R. Pazdur, L. D. Wagman, K. A. Camphausen, W. J. Hoskins, (eds.) Cancer Management: A Multidisciplinary Approach. 11th ed., Cmp. United Business Media. ISBN-13: 978-1891483622.

W. P. Levin, H. Kooy, J. S.Loeffler, T. F., DeLaney, Proton Beam Therapy, British Journal of Cancer 93, 849 (2005). https://doi.org/10.1038/sj.bjc.6602754

James Metz, (2006). “Differences Between Protons and X-rays”. Abramson Cancer Center of the University of Pennsylvania. http://www.oncolink.org/treatment/article.cfm?c=9&s=70&id=210. Accessed 4 February 2018.

W. D. Newhauser and R. Zhang, Phys. Med. Biol. 60, R155 (2015). https://doi.org/10.1088/0031-9155/60/8/R155

Basics physics of nuclear medicine/interaction of radiation with matter. From https://en.wikibooks.org/wiki/Basic_Physics_of_Nuclear_Medicine/ Interaction_of_Radiation_with_Matter. Accessed 15/9/2019

M. Chiari, Joint ICTP-IAEA Workshop on Nuclear Data for Analytical Applications. (2013) http://indico.ictp.it/event/a12218/session/23/contribution/14/material/0/0.pdf. Accessed 15 October 2019.

Geant4 official website. http://geant4.cern.ch/support/introductionToGeant4.shtml. Accessed 1 February 2018.

Fiber Optical Networking. http://www.fiber-opticalnetworking.com/getting-know-fiber-collimator.html. Accessed 9 February 2018.

J. T. Bushberg, J. A. Seibert, E. M. Leidholdt, and J. M. Boone, “The Essential Physics of Medical Imaging”, Second ed., Philadelphia: Lippincott Williams & Wilkins, 2006, p. 261. ISBN 9780781780575.

S. S. Romero Gonzalez, (2018). Geant4 study of a gamma-ray collimator for proton therapy. M.S. Thesis, University of Texas at El Paso. https://digitalcommons.utep.edu/dissertations/AAI10822888/. Accessed 10 September 2019. 

 

 

How to Cite
J A López; S S Romero González; O Hernández Rodríguez; J Holmes; R Alarcón. A GEANT4 Study of a Gamma-Ray Collimation Array. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 217-221.

Graft-Copolymerization of Acrylate Monomers onto Chitosan Induced by Gamma Radiation: Amphiphilic Polymers and Their Behavior at The Air-Water Interface

 

  • M. Caldera-Villalobos
    Department of Radiation Chemistry and Radiochemistry, Institute of Nuclear Sciences, National Autonomous University of Mexico. Circuito Exterior, Ciudad Universitaria, 04510, Ciudad de México, México
  • B. Leal-Acevedo
    Radiation Safety and Radiation Unit, Institute of Nuclear Sciences, National Autonomous University of Mexico. Circuito Exterior, Ciudad Universitaria, 04510, Ciudad de México, México
  • V.M. Velázquez-Aguilar
    Faculty of Sciences, National Autonomous University of Mexico.. Ciudad Universitaria, 04510, Ciudad de México, México
  • M. D. P. Carreón-Castro
    Department of Radiation Chemistry and Radiochemistry, Institute of Nuclear Sciences, National Autonomous University of Mexico. Circuito Exterior, Ciudad Universitaria, 04510, Ciudad de México, México
Keywords: Ionizing radiation, Graft copolymer, Biobased polymers, Polymer coatings, LB films

Abstract

Graft polymerization induced by ionizing radiation is a powerful tool in materials science to modifying the physical properties of polymers. Chitosan is a biocompatible, biodegradable, antibacterial, and highly hydrophilic polysaccharide. In this work, we report the obtaining of amphiphilic polymers through graft polymerization of acrylic monomers (methyl acrylate, t-butyl acrylate, and hexyl acrylate) onto chitosan. The polymerization reaction was carried out by simultaneous irradiation of monomers and chitosan using a gamma radiation source of 60Co. The formation of Langmuir films of amphiphilic polymers was studied at the air-water interface through surface pressure versus main molecular area isotherms (Π-A) and hysteresis cycles of compression and decompression. Finally, it was analyzed the transferring of Langmuir films towards solid substrates to obtaining Langmuir-Blodgett films with potential application as an antibacterial coating. The microstructure of the Langmuir-Blodgett films was characterized by AFM microscopy observing a regular topography with roughness ranging between 0.53 and 0.6 μm.

References

A. Charlesby, in Proceedings of the Conference on Electrical Insulation & Dielectric Phenomena-Annual Report 1966, Pocono Manor, USA, edited by IEEE, 1966.

A. L. El Hadrami, I. El Hadrami, and F. Daayf, Mar. Drugs. 8, 968 (2010). https://doi.org/10.3390/md8040968

S. Ausar, I. Bianco, R. Badini, L. Castagna, N. Modesti, C. Landa, and D. Beltramo, J. Dairy Sci. 84, 361 (2001). https://doi.org/10.3168/jds.S0022-0302(01)74485-2

M. M. Rocha, M. Coimbra, and C. Nunes., Curr. Opin. Food Sci. 15, 61 (2017). https://doi.org/10.1016/j.cofs.2017.06.008

F. Gassara, C. Antzak, C. Ajila, S. Sarma, S. Brar, and M. Verma, J. Food Eng. 166, 80 (2015). https://doi.org/10.1016/j.jfoodeng.2015.05.028

H. Kurtbay, Z. Bekçi, M. Merdivan, and K. Yurdakoç, J. Agr. Food Chem. 56, 2541 (2008). https://doi.org/10.1063/1.5092422

O. Tastan, and T. Baysal, Food Chem. 237, 818 (2017). https://doi.org/10.1016/j.foodchem.2017.06.025

A. Martín Diana, D. Rico, J. Barat, and C. Barry, Ryan. Innov. Food Sci. Emerg. 10, 590 (2009). https://doi.org/10.1016/j.ifset.2009.05.003

O. Tastan, and T. Braysal, Food Chem. 180, 211 (2015). https://doi.org/10.1016/j.foodchem.2015.02.053

R. Castro Domingues, S. Braz Faria Junior, R. Berdardes Silva, V. Cardoso, and M. Hespanhol Miranda Reis, Process Biochem. 47, 467 (2012). https://doi.org/10.1016/j.procbio.2011.12.002

H. Liu, H. Li, W. Cheng, Y. Yang, and M. Z. C. Zhu, Acta Biomater. 2, 557 (2006). https://doi.org/10.1016/j.actbio.2006.03.007

H. Xu, and C. Simon, Jr. Biomaterials. 26, 1337 (2005). https://doi.org/10.1016/j.biomaterials.2004.04.043

Y. Sun, A. Chen, W. Sun, K. Shah, H. Zheng, and C. Zhu., Desalin. Water Treat. 148, 259 (2019). https://doi.org/10.5004/dwt.2019.23953

Y. Sun, M. Ren, W. Sun, X. Xiao, Y. Xu, H. W. H. Zheng, Z. Lui, and H. Zhu., Environ. Technol. 40, 954 (2017).https://doi.org/10.1080/09593330.2017.1414312

H. Harslan, U. Aytaç, T. Bilir, and S. Sen, Constr. Build. Mater. 204, 541 (2019). https://doi.org/10.1016/j.conbuildmat.2019.01.209

Lu. D., H. Wang, X. Wang, Y. Li, H. Guo, S. Sun, X. Zhao, Z. Yang, and Z. Lei, Carbohyd. Polym. 215, 20 (2019). https://doi.org/10.1016/j.carbpol.2019.03.065

A. Ibrahim, A. Saleh, E. Elsharma, E. Metwally, and T. Siyam, Int. J. Biol. Macromol. 121, 1287(2019). https://doi.org/10.1016/j.ijbiomac.2018.10.107

Y. Zhou, P. Dong, Y. Wei, J. Qian, and D. Hua, Colloid Surface B: Biointerfaces 132, 132(2015). https://doi.org/10.1016/j.colsurfb.2015.05.019

W. Pasaphan, T. Rattanawongwiboon, P. Rimdusit, and T. Piroonpan, Rad. Phys. Chem. 94, 199 (2014). https://doi.org/10.1016/j.radphyschem.2013.06.026

T. Rattanawongwiboon, K. Haema, and W. Pasanphan. Rad. Phys. Chem. 94, 205 (2014). https://doi.org/10.1016/j.radphyschem.2013.05.039

M. Abdel Aziz, H. Naguib, and G. Saad, Int. J. Polym. Mater. Po.64. 578 (2014). https://doi.org/10.1080/00914037.2014.996707

M. González Torres, S. Vargas Muñoz, S. Solís Rosales, M. Carreón Castro, R. Esparza Muñoz, R. Olayo González, M. Estévez González, and R. Rodríguez Talavera, Carbohyd. Polym. 133, 482 (2015). https://doi.org/10.1016/j.carbpol.2015.07.032

 

 

How to Cite
M. Caldera-Villalobos; B. Leal-Acevedo; V.M. Velázquez-Aguilar; M. D. P. Carreón-Castro. Graft-Copolymerization of Acrylate Monomers onto Chitosan Induced by Gamma Radiation: Amphiphilic Polymers and Their Behavior at The Air-Water Interface. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 209-215.

Analysis of the Radon-222 Concentration and Physical-chemical Quality, in Drinking Water of Taxco, Guerrero

 

  • A. H. Ramírez
    Postgraduate in Natural Resources and Ecology. Autonomous University of Guerrero, Mexico; Faculty of Earth Sciences. Autonomous University of Guerrero A. P. 197, Taxco Guerrero-40200, Mexico
  • O. Talavera
    Postgraduate in Natural Resources and Ecology. Autonomous University of Guerrero, Mexico; Faculty of Earth Sciences. Autonomous University of Guerrero A. P. 197, Taxco Guerrero-40200, Mexico
  • S. Souto
    Postgraduate in Natural Resources and Ecology. Autonomous University of Guerrero, Mexico; Faculty of Earth Sciences. Autonomous University of Guerrero A. P. 197, Taxco Guerrero-40200, Mexico
  • J. I. Golzarri
    Institute of Physics National Autonomous University of Mexico. Scientific Research Circuit s/n, University City. Mexico City-04520, Mexico
  • G. Espinosa
    Institute of Physics National Autonomous University of Mexico. Scientific Research Circuit s/n, University City. Mexico City-04520, Mexico
Keywords: Drinking water, Spring water, Radon, Chemical composition

Abstract

In this work the determination of radon gas (222Rn) and the characterization of chemical elements in drinking water of the city Taxco was carried out. Ingesting or inhaling a small number of radionuclides, as well as water of poor chemical quality, can become a potential public health problem. We are collecting 8 samples of water from a spring, physicochemical parameters were measured in field on different days of the dry season. Measurements of 222Rn were performed in the laboratory with an AlphaGUARD equipment. The chemical quality was analyzed in laboratory too by means of mayor and minor ions, by volumetry and colorimetry. The sodium was determined by Flama Atomic Absorption Spectroscopy (FAAS). Trace elements were analyzed by were determined by Atomic Emission Spectroscopy with Plasma Coupled by Induction (ICP-AES). The concentrations of 222Rn present an average of 22.06 ± 2.52 BqL-1. The results obtained from the main ions and field parameters show a type of diluted sodium-calcium-bicarbonate water. The trace elements present are very small and not exceed the limit of quantification. Radon gas is produced by the igneous rock that is the top of the stratigraphic column, of the hydric recharge. Rainwater when descending through the fractures is impregnated with 222Rn gas and accumulated in the underlying rock that has sufficient porosity to accumulate water and gas in the Chacualco´s spring.

 

References

U. Akar et al., Romanian Journal of Physics 57, 1204 (2012).

EURATOM (2010) Treaty Consolidated Version of the Treaty Establishing the European Atomic Energy Community (2010/C 84/01). Article 35–36. https://doi.org/10.2860/52327

EURATOM (2013) Council Directive 2013/51/Euratom of 22 October 2013 Laying Down Requirements for the Protection of the Health of the General Public with Regard to Radioactive Substances in Water Intended for Human Consumption; E. Fonollosa, A. Penalver, F. Borrull, C. Aguilar, J. Environ. Radioact. 151, 275 (2016). https://doi.org/10.1016/j.jenvrad.2015.10.019

WHO (2008) World health organization guidelines for drinking water quality. In: Incorporating First and Second Addenda, third ed. WHO Press, Geneva. (2008), 3rd ed. World Health Organisation, Geneva, Switzerland.

US-EPA (1999) Radon in Drinking Water: Health Risk Reduction and Cost Analysis. Federal Register 64, Washington

C. Duenas, M.C. Fernandez, J. Carretero, E. Liger, and S. Canete, Journal of Environmental Radioactivity 45, 283 (1999). https://doi.org/10.1016/S0265-931X(98)00115-5

N. Todorovic et al., Applied Radiation and Isotopes 70, 543 (2012) https://doi.org/10.1016/j.apradiso.2011.11.045

D. Nikolopoulos and A. Louizi, Radiation Measurements 43, 1305 (2008). https://doi.org/10.1016/j.radmeas.2008.03.043

G. Wallner and G. Steininger, Journal of Radioanalytical and Nuclear Chemistry 274, 511 (2007). https://doi.org/10.1007/s10967-006-6939-4

M. Beyermann, T. Bünger, K. Schmidt and D. Obrikat, Radiat Prot Dosimetry 141, 72 (2010) https://doi.org/10.1093/rpd/ncq139

D. Desider et al., Journal of Environmental Radioactivity 94, 86 (2007). https://doi.org/10.1016/j.jenvrad.2007.01.005

J. L. Davila-Rangel et al., Applied Radiation and Isotopes 56, 931 (2002). https://doi.org/10.1016/S0969-8043(02)00047-7

D. Morán-Zenteno et al., Revista Mexicana de Ciencias Geológica. 15, 167 (1998).

 

Measurement of Content of 226Ra in Drinking Water From Some States of Mexican Republic by Liquid Scintillation Method

 

  • A. Ángeles
    National Institute of Nuclear Research, Mexico-Toluca Highway, La Marquesa, Ocoyoacac-52750, State of Mexico, Mexico
  • E. Quintero
    National Institute of Nuclear Research, Mexico-Toluca Highway, La Marquesa, Ocoyoacac-52750, State of Mexico, Mexico
  • I. Gaso
    National Institute of Nuclear Research, Mexico-Toluca Highway, La Marquesa, Ocoyoacac-52750, State of Mexico, Mexico
  • C. P. Zepeda
    National Institute of Nuclear Research, Mexico-Toluca Highway, La Marquesa, Ocoyoacac-52750, State of Mexico, Mexico
  • T. Palma
    National Institute of Nuclear Research, Mexico-Toluca Highway, La Marquesa, Ocoyoacac-52750, State of Mexico, Mexico
  • P. V. Rojas
    National Institute of Nuclear Research, Mexico-Toluca Highway, La Marquesa, Ocoyoacac-52750, State of Mexico, Mexico
Keywords: NORM, Radium, Drinking water, Screening, Radiotoxicity

Abstract

To assess the quality of drinking water in respect to the content of radioactivity, usually is carried out an screening program in the locations of interest, that program consist in pick representative samples of drinking water from the wells in that locations, water samples are analyzed to measuring the gross alpha/beta radioactivity by a low background proportional counter or a liquid scintillation system. When some sample exceeds the normative limit then it must be known which radionuclides are in that sample. Expected radionuclides in water are the NORM (normal occurring radioactive material) from the natural radioactive chains. 226Ra is frequently present in drinking water and is one of most important radionuclide because its “radiotoxicity”, the WHO [World Health Organization, Guidelines for drinking-water Quality, (2016)] recommends a reference level for 226Ra of 1 Bq/L (the dose coefficient for 226Ra is 2.8 x 10-7 Sv/Bq). From a national program of drinking water screening in the Mexican Republic, the samples that exceeded the national normative limits were picked again in the same well and analyzed by LS (liquid Scintillation), using the method of two phases with a not water miscible scintillator cocktail. Results of concentrations of 226Ra from drinking water are presented. In general the content of 226Ra in drinking water samples was lower that the guide values recommended for the WHO.

 

References

INTERNATIONAL ATOMIC ENERGY AGENCY, The Behaviour of Radium in Waterways and Aquifers (Results of a Co-ordinated Research Programme), IAEA-TECDOC-301, IAEA, Vienna (1984).

R. H. Gilkeson, K. Cartwright, J. B. Cowart and R. B. Holtzman, Hydrologic and Geochemical Studies of Selected Natural Radioisotopes and Barium in GroundWater in Illinois. Univ. Illinois Water Res. Center (Rept. 83-0180), (1983).

C.R. Cothern and W. L. Lappenbusch, Health Phys. 46, 503 (1984). https://doi.org/10.1097/00004032-198403000-00001

R. T. Kay, Radium in Ground Water from Public-Water Supplies in Northern Illinois. USCS Fact Sheet 137–99. Urbana IL: US Geographical Survey, US Department of Interior. 1999. https://doi.org/10.3133/fs13799

M Eisenbud and T. Gesell Environmental radioactivity. From Natural, Industrial, and Military Sources, 4th edition (Academic Press), 1997. https://doi.org/10.1016/B978-012235154-9/50010-4

W. Stumm and J. Morgan, Chemical Equilibria and Rates in Natural Waters Aquatic Chemistry. Third edition. Wiley Interscience, New York, 1995.

D. Langmuir and D. Melchoir, Geochim. Cosmochim. Acta 49, 2423 (1985). https://doi.org/10.1016/0016-7037(85)90242-X

Kelly W. R., Radium and barium in the Ironton-Galesville bedrock aquifer in Northeastern Illinois. Illinois State Water Survey Report CR–2008–03 28, 2008.

M. R. Davidson and B. L. Dickson, Water Resources Research 22, 34 (1986). https://doi.org/10.1029/WR022i001p00034

S. Krishnaswami, W. C. Graustein, K. K. Turekian and J. F. Dowd, Water Resour. Res. 18, 1663 (1982). https://doi.org/10.1029/WR018i006p01663

R. M. Tripathi, V. N. Jha, S. K. Sahoo, N. K. Sethy, A. K. Shukla, V. D. Puranik and H. S. Kushwaha, Radia. Prot. Dosimetry 148, 211 (2011). https://doi.org/10.1093/rpd/ncr014

Eisenbud M. and Gesell T. Environmental radioactivity. From Natural, Industrial, and Military Sources, 4th edition (Academic Press), 1997. https://doi.org/10.1016/B978-012235154-9/50010-4

Brenner D et al., PNAS 100, 13761 (2003). https://doi.org/10.1073/pnas.2235592100

M. I. Sherif, J. Lin, A. Poghosyan and A. Abouelmagd, M. I. Sultan and N.C. Sturchio Science of the Total Environment 877, 613–614 (2018). https://doi.org/10.1016/j.scitotenv.2017.09.129

World Health Organization (WHO), Guidelines for drinking-water Quality, Switzerland, 2016.

Secretaría de Salud. Modificación a la norma oficial mexicana NOM- NOM-127-SSA1-1994, Salud Ambiental. Agua para uso y Consumo humano. Límites permisibles de calidad y tratamiento a que debe someterse el agua para su potabilización, Mexico 1994.

Secretaría de Salud. Norma Oficial Mexicana NOM-201-SSA1-2015, Productos y Servicios. Agua y hielo para consumo humano, envasado y a granel. Mexico, 2015.

Instituto Nacional de Estadística y Geografía (INEGI), https://www.inegi.org.mx, Mexico 2019.

ISO 13164-4, Test method using two-phase liquid scintillation counting, Switzerland, 2015.

IAEA. (International Atomic Energy Agency). Radiation and society: Comprehending radiation risk, 1. Paris, France, 1994.

USEPA National primary drinking water regulations; radon-222. Washington, DC, 1999.

 

 

How to Cite
A. Ángeles; E. Quintero; I. Gaso; C. P. Zepeda; T. Palma; P. V. Rojas. Measurement of Content of 226Ra in Drinking Water From Some States of Mexican Republic by Liquid Scintillation Method. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 195-201.

 

Structural Variations Induced by Temperature Changes in Rotavirus VP6 Protein Immersed in an Electric Field and Their Effects on Epitopes of The Region 300-396

 

  • C. Peña-Negrete
    Molecular Biophysics Laboratory of the Faculty of Sciences, Autonomous University of the State of Mexico, Mexico
  • M.A. Fuentes-Acosta
    Molecular Biophysics Laboratory of the Faculty of Sciences, Autonomous University of the State of Mexico, Mexico
  • J. Mulia
    Molecular Biophysics Laboratory of the Faculty of Sciences, Autonomous University of the State of Mexico, Mexico
  • L.A. Mandujano-Rosas
    Molecular Biophysics Modeling and Prototyping Laboratory, Mexiquense University, S. C., State of Mexico, Mexico
  • D. Osorio-González
    Molecular Biophysics Laboratory of the Faculty of Sciences, Autonomous University of the State of Mexico, Mexico
Keywords: Rotavirus, VP6, Antigenic determinants

Abstract

Rotavirus diarrhea is an infectious intestinal disease that causes about 215 thousand deaths annually in infants under five years old. This virus is formed by three layers of concentric proteins that envelop its genome, from which VP6 structural protein is the most conserved among rotavirus serotypes and an excellent vaccine candidate. Recent studies have shown that structural proteins are susceptible to losing their biological function when their conformation is modified by moderate temperature increments, and in the case of VP6, its antigen efficiency decreases. We performed an in silicoanalysis to identify the structural variations in the epitopes 301-315, 357-366, and 376-384 of the rotavirus VP6 protein -in a hydrated medium- when the temperature is increased from 310 K to 322 K. In the latter state, we applied an electric field equivalent to a low energy laser pulse and calculated the fluctuations per amino acid residue. We identified that the region 301-315 has greater flexibility and density of negative electrical charge; nevertheless, at 322 K it experiences a sudden change of secondary structure that could decrease its efficiency as an antigenic determinant. The applied electric field induces electrical neutrality in the region 357-366, whereas in 376-384 inverts the charge, implying that temperature changes in the range 310 K-322 K are a factor that promotes thermoelectric effects in the VP6 protein epitopes in the region 300-396.

 

References

J. E. Tate et al., Clin Infect Dis. Dis. 62, S96 (2016). https://doi.org/10.1093/cid/civ1013

M. K. Estes and H. B. Greenberg, in Fields Virology, edited by D. M. Knipe and P. M. Howley (Lippincott Williams & Wilkins, Philadelphia, 2013), 6th ed., 1347–1401.

R. L. Ward and M. M. McNeal,J. Infect. Dis. 202, S101 (2010). https://doi.org/10.1086/653556

S. Lappalainen et al., Archives of virology 160, 2075 (2015). https://doi.org/10.1007/s00705-015-2461-8

M. Mathieu et al., EMBO J 20, 1485 (2001). https://doi.org/10.1093/emboj/20.7.1485

I. Erk et al., J. Virol. 77, 3595 (2003). https://doi.org/10.1128/JVI.77.6.3595-3601.2003

T. Grant and N. Grigorieff, Elife 4, e06980 (2015). https://doi.org/10.7554/eLife.06980

W. I. García-García et al., Bioelectrochemistry 127, 180 (2019). https://doi.org/10.1016/j.bioelechem.2019.02.012

K. F. Ready and M. Sabara, Virology 157, 189 (1987). https://doi.org/10.1016/0042-6822(87)90328-X

J. Lepault et al., EMBO J. 20, 1498 (2001). https://doi.org/10.1093/emboj/20.7.1498

K. F. M. Ready, M. I. J. Sabara and L. A. Babiuk, Virology 167, 269 (1988). https://doi.org/10.1016/0042-6822(88)90077-3

E. A. Mansell, R. F. Ramig and J. T. Patron, Virology 204, 69 (1994). https://doi.org/10.1006/viro.1994.1511

M. Munoz, M. Rios and E. Spencer, Intervirology 38, 256 (1995). https://doi.org/10.1159/000150448

G. Tosser et al., J. Virol. 66, 5825 (1992).

A. H. Choi et al., Vaccine 21, 761 (2003). https://doi.org/10.1016/S0264-410X(02)00595-9

M. M. McNeal et al., Virology 363, 410 (2007). https://doi.org/10.1016/j.virol.2007.01.041

M. A. Franco et al., J. Gen. Virol 75, 589 (1994). https://doi.org/10.1099/0022-1317-75-3-589

W. Zhao, B. Pahar and K. Sestak, Virology: research and treatment 1, 9 (2008). https://doi.org/10.4137/VRT.S563

B. Winter and M. Faubel, Chem. Rev. 106, 1176 (2006). https://doi.org/10.1021/cr040381p

S. A. Egorov, K. F. Everitt and J. L. Skinner, J. Phys. Chem. A 103, 9494 (1999). https://doi.org/10.1021/jp9919314

D. R. Hekstra et al., Nature 540, 400 (2016). https://doi.org/10.1038/nature20571

M. Parra et al., Virology 191, 452–453 (2014). https://doi.org/10.1016/j.virol.2014.01.014

O. V. Morozova et al., Virus genes 54, 225 (2018). https://doi.org/10.1007/s11262-017-1529-9

M. C. Jaimes, N. Feng and H. B. Greenberg, J virol 79, 4568 (2005). https://doi.org/10.1128/JVI.79.8.4568–4579.2005

J. Q. Jiang et al., J virol 82, 6812 (2008). https://doi.org/10.1128/JVI.00450-08

A. H. C. Choi et al., J virol 74, 11574 (2000). https://doi.org/10.1128/JVI.74.24.11574-11580.2000

M. S. Aiyegbo et al., PLoS ONE 8, e61101 (2013). https://doi.org/10.1371/journal.pone.0061101

 

Development and Validation of an X-ray Imaging Detector for Digital Radiography at Low Resolution

 

  • Abdiel Ramírez Reyes
    Department of Physics and Mathematics, Autonomous University of Ciudad Juárez, Av. Del Charro 450 Nte. Col. Romero CP Party 32310, Cd. Juárez, Chihuahua, Mexico
  • Gerardo Herrera Corral
    Department of Physics of CINVESTAV-IPN, AP 14-740, Avenida Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City, CP-07360, Mexico
  • Elsa Ordoñez Casanova
    Department of Industrial Engineering and Manufacturing, Autonomous University of Ciudad Juárez, Av. Del Charro 450 Nte. Cabbage. Romero Party CP-32310, Cd. Juarez, Chihuahua, Mexico
  • Héctor Alejandro Trejo Mandujano
    Department of Physics and Mathematics, Autonomous University of Ciudad Juárez, Av. Del Charro 450 Nte. Col. Romero CP Party 32310, Cd. Juárez, Chihuahua, Mexico
  • Uzziel Caldiño Herrera
    Department of Physics and Mathematics, Autonomous University of Ciudad Juárez, Av. Del Charro 450 Nte. Col. Romero CP Party 32310, Cd. Juárez, Chihuahua, Mexico
Keywords: X-ray detector, Digital radiography, Scintillator, CCD image sensor, Spatial resolution

Abstract

Digital X-ray detectors are required in different sciences and applications, however many high quality devices are expensive although high-resolution images are not always required. We present an easy way to build a detector capable of forming X-ray digital images and video with a very large area (18×18 cm2). The detector is formed by three main components: scintillator, optics lenses and CCD sensor. Basically, the device converts the X-rays into visible light which is then collected by the CCD sensor. The scintillator is Gadox type, from Carestream®, 18×18 cm2, regular type, lambda 547 nm. The optics lenses are generic, with manual focus and widely visual field. The CCD sensor has a size of 1/3″, 752 × 582 pixels, monochrome, 20 FPS, 12 bits ADC and pixel size of 3.8 μm. With the built detector and an X-ray source, we formed an X-ray imaging detection system to generate digital radiographs of biological or inert objects-examples are given-, as well as real-time X-ray video. Additionally, the spatial resolution limit was measured in terms of Modulation Transfer Function by the method of opaque edge from a lead sheet with a result of 1.1 Lp/mm. Finally using a filter, the focal spot of the X-ray source is measured, resulting in a diameter of 0.9 mm (FWHM).

References

A. B. Reed, Journal of Vascular Surgery 53, 3S (2011). https://doi.org/10.1016/j.jvs.2010.07.024

H.E. Martz et al., X-ray Imaging: fundamentals, industrial techniques and applications. CRC Press, (2016).

T. Angsuwatanakul et al., International Symposium on Communications and Information Technologies, Bangkok, 2006, 1145 (2006). https://doi.org/10.1109/ISCIT.2006.339959

M. Nikl, Meas. Sci. Technol. 17, R37 (2006). https://doi.org/10.1088/0957-0233/17/4/R01

A. D. A. Maidment and M. J. Yaffe, Phys. Med. Biol. 40, 877 (1995). https://doi.org/10.1088/0031-9155/40/5/011

A. D. A. Maidment and M. J. Yaffe, Phys. Med. Biol. 41, 475 (1996). https://doi.org/10.1088/0031-9155/41/3/010

Zschornack, Günter H. Handbook of X-ray Data. Springer Science & Business Media, (2007).

Knoll, Glenn F. Radiation detection and measurement. John Wiley & Sons, (2010).

Als-Nielsen, Jens, and Des McMorrow. Elements of modern X-ray physics. John Wiley & Sons, (2011). https://doi.org/10.1002/9781119998365

J. G. Rocha and S. Lanceros-Mendez, Recent Patents on Electrical & Electronic Engineering 4, 16 (2011). https://doi.org/10.2174/1874476111104010016

E. Samei, M. J. Flynn and D. A. Reimann, Medical physics 25, 102 (1998). https://doi.org/10.1118/1.598165

Hartmut Illers et al., Radiation Protection Dosimetry 114, 214 (2005). https://doi.org/10.1093/rpd/nch506

J. D. Everson and J. E. Gray, Radiology 165, 261 (1987). https://doi.org/10.1148/radiology.165.1.3628780

B. A. Arnold, B. E. Bjarngard and J. C. Klopping, Physics in Medicine & Biology 18, 540 (1973). https://doi.org/10.1088/0031-9155/18/4/006

B. K. Cha et al., Radiation Measurements 45, 742 (2010). https://doi.org/10.1016/j.radmeas.2009.12.025


Issue

  

How to Cite

Abdiel Ramírez Reyes; Gerardo Herrera Corral; Elsa Ordoñez Casanova; Héctor Alejandro Trejo Mandujano; Uzziel Caldiño Herrera. Development and Validation of an X-Ray Imaging Detector for Digital Radiography at Low Resolution. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 181-187.

 

Study of the Erosion of Copper by Hot Plasma

 

  • R. S. Monzamodeth
    Chemistry Faculty, National Autonomous University of Mexico (UNAM), PO Box 04510 Mexico City, Mexico
  • B. Campillo
    Chemistry Faculty, National Autonomous University of Mexico (UNAM), PO Box 04510 Mexico City, Mexico
Keywords: Copper, Hot plasma, Erosion, Hardness, Plasma/Wall interactions, Hydrophobic properties

Abstract

An exhaustive study of the erosion process of a copper cathode exposed to a hot plasma column of 2kJ of energy (T≈0.5-2.0keV) and high electron density (n≈1019-1022cm3) was made, as well as, the radiation field of charged and neutral particles. The characterization of the cumulative damage generated by the plasma/cathode interaction was made by the use of metallographic techniques, scanning electron microscopy (SEM) and by the analysis of mechanical properties. Damage accumulation produced by the impacts of deuterium plasma discharge created in the copper electrode a deep cavity similar to a crater, modifying the morphology of the surface and below it. The microhardness Vickers test was carried out making indentations from the final part of the cavity to cover 1 cm with indentations every 200 μm. Different areas of hardening were observed, the profile suggests a hardening/recovery front and simultaneous recrystallization in the sample, phenomenon associated with the heating/cooling cycles to which the copper cathode is subjected. Images were captured by SEM at different distances from the center of the surface. The region that showed involvement at the macro level corresponds to 2/3 of the radius of the sample from the center to the outside. These phenomena studied are important to understand the nature of the plasma/wall interaction in any fusion device.

 

References

F. Castillo et al., Braz. J. of Phy. 32, 3 (2002). https://doi.org/10.1590/S0103-97332002000100002

F. Castillo et al., Rad. Prot. Dos. 101, 557 (2002). https://doi.org/10.1093/oxfordjournals.rpd.a006048

F. Castillo et al., Plas. Phy. Cont. Fus. 45, 289 (2003). https://doi.org/10.1088/0741-3335/45/3/309

M. Zakaullah, K. Alamgir, G. Murtaza and A. Waheed, Plas. Sou. Sci. Technol. 9, 592 (2000). https://doi.org/10.1088/0963-0252/9/4/315

J. Pouzo, H. Acuña, M. Milanese, and R. Moroso, Eur. Phys. J. D 21, 97 (2002). https://doi.org/10.1140/epjd/e2002-00183-2

F. Castillo, I. Gamboa-deBuen, J.J.E. Herrera, J. Rangel and S. Villalobos, App. Phy. Lett. 92, 051502 (2008). https://doi.org/10.1063/1.2840191

F. Castillo, I. Gamboa-deBuen, J.J.E. Herrera, J. Rangel; 29th ICPIG 2009 16-19 (2009).

R. Reed–Hill and R. Abbaschian, Physical Metallurgy Principles (Boston, PWS-Kent Pub.1992)3rd Edition, Chapter 20, 688–691.

F. Castillo, J.J.E. Herrera and J. Rangel, AIP Conf. Proc. Series 875, 405 (2006). https://doi.org/10.1063/1.2405975

F. Di Lorenzo et al., J. Appl. Phys. 102, 033304, (2007). https://doi.org/10.1063/1.2767829

C. Moreno et al., Appl. Phys. Letts. 89, 091502 (2006). https://doi.org/10.1063/1.2335631

S. Hussain et al., Plasma Sources Sci. Technol. 14, 61 (2005). https://doi.org/10.1088/0963-0252/14/1/008

J. García Molleja et al., Surf. Coat. Tech. 218, 142 (2013). https://doi.org/10.1016/j.surfcoat.2012.12.043

J. García Molleja et al., Surf. Interface Anal. 47, 728 (2015). https://doi.org/10.1002/sia.5770

V.N. Pimenov et al., Nukleonika 53, 111 (2008).

R. L. Klueh et al., J. Nucl. Mater. 455, 307 (2002). https://doi.org/10.1016/S0022-3115(02)01082-6

G. Sánchez, G. Grigioni and J. Feugeas, Surf. Coat. Technol. 70, 181 (1995). https://doi.org/10.1016/0257-8972(94)02265-R

Michael F. Ashby, Materials Selection in Mechanical Design, Pergamum Press, Third Edition (2005). 

 

Issue
 
 
 
How to Cite
R. S. Monzamodeth; B. Campillo. Study of the Erosion of Copper by Hot Plasma. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 173-179.

 

 

Study of CT Images Processing with the Implementation of MLEM Algorithm using CUDA on NVIDIA’S GPU Framework

 

  • T. A. Valencia-Pérez
    Faculty of Physical Sciences Mathematics Benemérita Universidad Autónoma de Puebla, Avenida San Claudio y 18 Sur, Colonia San Manuel, Building FM2-203, Ciudad Universitaria, C.P. 72570, Puebla, Mexico
  • J. M. Hernández-López
    Faculty of Physical Sciences Mathematics Benemérita Universidad Autónoma de Puebla, Avenida San Claudio y 18 Sur, Colonia San Manuel, Building FM2-203, Ciudad Universitaria, C.P. 72570, Puebla, Mexico
  • E. Moreno-Barbosa
    Faculty of Physical Sciences Mathematics Benemérita Universidad Autónoma de Puebla, Avenida San Claudio y 18 Sur, Colonia San Manuel, Building FM2-203, Ciudad Universitaria, C.P. 72570, Puebla, Mexico
  • B. de Celis-Alonso
    Faculty of Physical Sciences Mathematics Benemérita Universidad Autónoma de Puebla, Avenida San Claudio y 18 Sur, Colonia San Manuel, Building FM2-203, Ciudad Universitaria, C.P. 72570, Puebla, Mexico
Keywords: Computed tomography, Algorithms, GPU, Reconstruction, Image quality

Abstract

In medicine, the acquisition process in Computed Tomography Images (CT) is obtained by a reconstruction algorithm. The classical method for image reconstruction is the Filtered Back Projection (FBP). This method is fast and simple but does not use any statistical information about the measurements. The appearance of artifacts and its low spatial resolution in reconstructed images must be considered. Furthermore, the FBP requires of optimal conditions of the projections and complete sets of data. In this paper a methodology to accelerate acquisition process for CT based on the Maximum Likelihood Estimation Method (MLEM) algorithm is presented. This statistical iterative reconstruction algorithm uses a GPU Programming Paradigms and was compared with sequential algorithms in which the reconstruction time was reduced by up to 3 orders of magnitude while preserving image quality. Furthermore, they showed a good performance when compared with reconstruction methods provided by commercial software. The system, which would consist exclusively of a commercial laptop and GPU could be used as a fast, portable, simple and cheap image reconstruction platform in the future.

 

References

S. C. Bushong, Manual de radiología para técnicos: Física, biología y protección radiológica. Elsevier, 2010.

Health at a Glance 2017. OECD Publishing, 2017. https://doi.org/10.1787/19991312

T. M. Buzug, Computed Tomography: From Photon Statistics to Modern Cone-Beam CT. Springer, Berlin, Heidelberg, 2008.

K. Peace et al., J. Neurosci. Nurs. 42, 109, 2010. https://doi.org/10.1097/JNN.0b013e3181ce5c5b

L. A. Feldkamp, L. C. Davis and J. W. Kress, J. Opt. Soc. Am. 1, 612 (1984). https://doi.org/10.1364/JOSAA.1.000612

A. C. Kak, M. Slaney, G. Wang, Med. Phys. 29, 107 (2002). https://doi.org/10.1118/1.1455742

S. R. Deans, The Radon Transform and Some of Its Applications. John Wiley & Sons, Inc., 1983.

J. Radon, Akad. Wiss. 69, 262 (1917).

F. Natterer, The Mathematics of Computerized Tomography. Society for Industrial and Applied Mathematics, 2001. https://doi.org/10.1137/1.9780898719284

B. F. Hutton, J. Nuyts, Y. H. Zaidi, “Iterative Reconstruction Methods”, en Quantitative Analysis in Nuclear Medicine Imaging, H. Zaidi, Ed. Boston, MA: Springer US, 2006, pp. 107–14. https://doi.org/10.1007/0-387-25444-7_4

G. L. Zeng, Medical Image Reconstruction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.

J. Hsieh, B. Nett, Z. Yu, K. Sauer, J.-B. Thibault, C. A. Bouman, Curr. Radiol. Rep. 1, 39 (2013). https://doi.org/10.1007/s40134-012-0003-7

L.A. Shepp Y. Vardi, IEEE Trans. Med. Imaging 1, 113 (1982). https://doi.org/10.1109/TMI.1982.4307558

H. Shi, S. Luo, Z. Yang, G. Wu, PLoS One 10, 1 (2015). https://doi.org/10.1371/journal.pone.0138498

S. Vandenberghe et al., Computerized Medical Imaging and Graphics 25, 105 (2001). https://doi.org/10.1016/S0895-6111(00)00060-4

L. L. Geyer et al., Radiology 276, 339 (2015). https://doi.org/10.1148/radiol.2015132766

S. Cook, CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs, núm. 1. 2013.

J. Sanders, E. Kandrot, CUDA by Example: An Introduction to General-Purpose GPU Programming, 1st ed. Addison-Wesley Professional, 2010.

M. Schellmann et al., J. Supercomput. 57, 151 (2011). https://doi.org/10.1007/s11227-010-0397-z

R. Whitrow, OpenGL Graphics Through Applications, 1a ed. Springer Publishing Company, Incorporated, 2008.

GNU Project, “GCC, the GNU Compiler Collection”. 1987.

NVIDIA, “GPU-Accelerated applications”. 2019.

S. Che et al., J. Parallel Distrib. Comput. 68, 1370 (2008). https://doi.org/10.1016/j.jpdc.2008.05.014

A. Eklund, P. Dufort, D. Forsberg and S. M. LaConte, Med. Image Anal. 17, 1073 (2013). https://doi.org/10.1016/j.media.2013.05.008

T. Kalaiselvi, P. Sriramakrishnan and K. Somasundaram, Informatics Med. Unlocked 9, 133 (2017). https://doi.org/10.1016/j.imu.2017.08.001

N. Tatarchuk, J. Shopf and C. DeCoro, J. Parallel Distrib. Comput. 68, 1319 (2008). https://doi.org/10.1016/j.jpdc.2008.06.011

L. A. Flores, V. Vidal, P. Mayo, F. Rodenas and G. Verdú, Procedia Comput. Sci. 18, 1412 (2013). https://doi.org/10.1016/j.procs.2013.05.308

M.A. Belzunce, C.A. Verrastro, E. Venialgo and I. M. Cohen, Open Med. Imaging J. 108 (2012). https://doi.org/10.2174/1874347101206010108

G. Pratx and L. Xing, Med. Phys. 38, 2685 (2011). https://doi.org/10.1118/1.3578605

K. Lange, M. Bahn and R. Little, IEEE Trans. Med. Imaging. 6, 106 (1987). https://doi.org/10.1109/TMI.1987.4307810

E. S. Gopi, Digital Signal Processing for Medical Imaging Using Matlab. New York, NY, USA: Springer, 2013. https://doi.org/10.1007/978-1-4614-3140-4

V. Hemelryck Tessa, W. Sarah, G. Maggie, B. Kees Joost, y J. Sijbers, “ITERATIVE RECONSTRUCTION ALGORITHMS The implementation of iterative reconstruction algorithms in MATLAB”, 2007.

L. Han, “Tools for 2-D Tomographic Reconstruction”, GitHub repository. GitHub, 2017.

A. Biguri, M. Dosanjh, S. Hancock and M. Soleimani, Biomed. Phys. Eng. Express 2, 55010 (2016). https://doi.org/10.1088/2057-1976/2/5/055010

E. Y. Sidky and X. Pan, Phys. Med. Biol. 53, 4777 (2008). https://doi.org/10.1088/0031-9155/53/17/021

I. Intel Corporation Willow Garage, “Open Source Computer Vision”. 2000.

K. Clark et al., J. Digit. Imaging. 26, 1045 (2013). https://doi.org/10.1007/s10278-013-9622-7

 

 

How to Cite

T. A. Valencia-Pérez; J. M. Hernández-López; E. Moreno-Barbosa; B. de Celis-Alonso. Study of CT Images Processing With the Implementation of MLEM Algorithm Using CUDA on NVIDIA’S GPU Framework. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 165-171.

Monday, 7 September 2020

Characterizing a Mini Gamma Detector

 

  • E. Márquez-Quintos
    Faculty of Mathematical Physical Sciences, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Mexico
  • E. Moreno-Barbosa
    Faculty of Mathematical Physical Sciences, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Mexico
  • J. E. Espinosa
    Faculty of Mathematical Physical Sciences, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Mexico
  • Benito de Celis Alonso
    Faculty of Mathematical Physical Sciences, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Mexico
  • Margarita Amaro Aranda
    Faculty of Electronics Sciences, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Mexico
  • R. Palomino Merino
    Faculty of Mathematical Physical Sciences, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Mexico
Keywords: Gamma ray, Crystal Scintillator, Spectrophotometer, Calibration

Abstract

There are several types of gamma radiation detectors, which have different characteristics depending on its use. We designed and instrumented a gamma detector for low energies of a small and portable size to obtain spectrum from radioactive sources and from that analyze each spectrum. This instrument basically consists of a scintillator crystal coupled to a SiPM this in turn coupled to a PCB card designed with capacitors and resistors for a better signal, a voltage source of 29 volts. For signal acquisition the system must be connected to an oscilloscope this in turn is controlled by a script developed in Python. For the calibration radioactive isotopes with the same dimensions were used, caesium-137 (Cs-137), cobalto-60 (Co-60), sodium-22 (Na-22) and manganese-54 (Mn-54) as gamma ray emission.

 

References

Knoll, Glenn F. Radiation detection and measurement. John Wiley & Sons, 2010.

V. Saveliev, and V. Golovin, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 442, 223 (2000). https://doi.org/10.1016/S0168-9002(99)01225-5

M.T. Madsen, Journal of Nuclear Medicine 48, 661 (2007). https://doi.org/10.2967/jnumed.106.032680

O. H. Nestor and C. Y. Huang, IEEE Transactions on Nuclear Science 22, 68 (1975). https://doi.org/10.1109/TNS.1975.4327617

Root Analysis Framework, http://root.cern.ch

C. Jackson et al., Proceedings 9359, Optical Components and Materials XII; 93591C (2015). https://doi.org/10.1117/12.2076898

L. Schlattauer et al., European Journal of Physics 38, 055806 (2017). https://doi.org/10.1088/1361-6404/aa7a7a

 

Issue
 
 
How to Cite
E. Márquez-Quintos; E. Moreno-Barbosa; J. E. Espinosa; Benito de Celis Alonso; Margarita Amaro Aranda; R. Palomino Merino. Characterizing a Mini Gamma Detector. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 159-163.
 

 

Analysis of DDM into Gamma Radiation

 

  • C. Arellano-Celiz
    Faculty of Mathematical Physical Sciences, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 1152, Puebla, Pue.-72000, Mexico
  • A. Avilez-López
    Faculty of Mathematical Physical Sciences, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 1152, Puebla, Pue.-72000, Mexico
  • J. E. Barradas-Guevara
    Faculty of Mathematical Physical Sciences, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 1152, Puebla, Pue.-72000, Mexico
  • O. Félix-Beltrán
    Faculty of Electronics Sciences, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 542, Puebla, Pue.-72000, Mexico
  • F. González-Canales
    Faculty of Electronics Sciences, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 542, Puebla, Pue.-72000, Mexico
Keywords: Dark matter, Dipolar dark matter, WIMP, Relic density

Abstract

We are interested in the purpose of a dipolar fermionic particle as a viable candidate of Dark Matter (DDM). Then, we study the annihilation of dark matter into photons, considering it as a neutral particle with non-vanishing magnetic (M) and electric (D) dipolar moments. The total annihilation cross section σ(χchi bar → γgamma bar) is computed by starting from a general form of coupling χchi barγ in a framework beyond to Standard Model (BSM). We found that candidates with O(mχ )∽102GeV, D≈10−16 e cm are required in order to satisfy the current cosmic relic density.

 

References

F. Zwicky, Helv. Phys. Acta 6, 110–127 (1933).

V. C. Rubin, J. Burley, A. Kiasatpoor, B. Klock, G. Pease, E. Rutscheidt and C. Smith, Phys 67, 491 (1962). https://doi.org/10.1086/108758

N. Fornengo, Adv. Space Res. 41, 2010 (2008). https://doi.org/10.1016/j.asr.2007.02.067

G. Jungman, M. Kamionkowski, and K. Griest, Phys. Rept. 267, 195 (1996). https://doi.org/10.1016/0370-1573(95)00058-5

M. S. Turner, Phys. Rept. 197, 67 (1990). https://doi.org/10.1016/0370-1573(90)90172-X

G. D. Starkman, A. Gould, R. Esmailzadeh, and S. Dimopoulos, Phys. Rev. D 41, 3594 (1990). https://doi.org/10.1103/PhysRevD.41.3594

E. D. Carlson, M. E. Machacek, and L. J. Hall, The Astrophysical Journal 398, 43 (1992). https://doi.org/10.1086/171833

D. N. Spergel, and P. J. Steinhardt, Phys. Rev. Lett. 84, 3760 (2000). https://doi.org/10.1103/PhysRevLett.84.3760

A. Gould, B. T. Draine, R.W. Romani, and S. Nussinov, Phys. Lett. B 238, 337 (1990). https://doi.org/10.1016/0370-2693(90)91745-W

S. Davidson, S. Hannestad and G. Raffelt, JHEP 05, 003 (2000). https://doi.org/10.1088/1126-6708/2000/05/003

S. L. Dubovsky, D. S. Gorbunov, and G. I. Rubtsov, JETP Lett. 79, 1 (2004). https://doi.org/10.1134/1.1675909

J. H. Ho, Phys. Lett. B 693, 255 (2010). https://doi.org/10.1016/j.physletb.2010.08.035

E. Masso, S. Mohanty, Subhendra and S. Rao, Phys. Rev. D 80, 036009 (2009). https://doi.org/10.1103/PhysRevD.80.036009

S. Profumo, and K. Sigurdson, Phys. Rev. D 75, 023521 (2007). https://doi.org/10.1103/PhysRevD.75.023521

R. R. Caldwell, and M. Kamionkowski, Phys. Rev. D 70, 083501 (2004). https://doi.org/10.1103/PhysRevD.70.083501

N. Aghanim et al. (Planck Collaboration), arXiv:1807.06209 [astro-ph.CO] (2018).

J. H. Heo, Phys. Lett. B 702, 205 (2011). https://doi.org/10.1016/j.physletb.2011.06.088

E. Fermi, and E. Teller, Phys. Rev. 72, 399 (1947). https://doi.org/10.1103/PhysRev.72.399

K. Sigurdson, M. Doran, A. Kurylov, R. R. Caldwell, and M. Kamionkowski, Phys. Rev. D 70, 083501 (2004). https://doi.org/10.1103/PhysRevD.70.083501

N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, and N. Weiner, Phys. Rev. D 79, 015014 (2009). https://doi.org/10.1103/PhysRevD.79.015014

L.Bergström, Reports on Progress in Physics 63, 793 (2000). https://doi.org/10.1088/0034-4885/63/5/2r3

C. Arellano-Celiz, A. Avilez-López, J. E. Barradas-Guevara, and O. Félix-Beltrán, arXiv:1908.05695 [hep-ph].

M. Cannoni, Eur. Phys. J. C 76, 137 (2016), arXiv:1506.07475 [hep-ph]. 

 

 

How to Cite

C. Arellano-Celiz; A. Avilez-López; J. E. Barradas-Guevara; O. Félix-Beltrán; F. González-Canales. Analysis of DDM into Gamma Radiation. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 153-157.

Preliminary Measurements of Be-10/Be-7 Ratio in Rainwater for Atmospheric Transport Analysis

 

  • K. de los Ríos
    Physics Institute, National Autonomous University of Mexico. P.O. Box 20-364, Mexico City, Mexico
  • C. Méndez-García
    CONACyT Lecturers - Physics Institute, National Autonomous University of Mexico. P.O. Box 20-364, Mexico City, Mexico
  • L. Acosta
    Physics Institute, National Autonomous University of Mexico. P.O. Box 20-364, Mexico City, Mexico
  • R. García-Martínez
    Atmosphere Science Center, National Autonomous University of Mexico, Mexico City-04510, Mexico
  • M. A. Martínez-Carrillo
    Science Faculty, National Autonomous University of Mexico, 04510 Mexico City, Mexico
  • M. E. Ortiz
    Physics Institute, National Autonomous University of Mexico. P.O. Box 20-364, Mexico City, Mexico
Keywords: Rainwater, Beryllium-7, Beryllium-10, AMS, HP-Ge

Abstract

The meteoric cosmogenic beryllium has been used as an essential geophysical tracer in the analysis of atmospheric flows and erosion soils since 1960. The first measurements Be-7 and Be-10 concentrations in rainwater from Mexico, have been carried out by using gamma decay spectroscopy and AMS techniques, respectively for each isotope. With this it was possible to report a preliminar value for the Be-10/Be-7 isotopic ratio in such environmental samples. The present work described preliminary results related to rainwater collected at mountain and metropolitan areas. Results are compared with predictions and previous measurements for both radioisotopes, observing a very sensible behavior particularly for the case of Be-7 activities.

References

W. Kutschera, Adv. Phys.: X 1, 570 (2016). https://doi.org/10.1080/23746149.2016.1224603

A. M. Smith, D. Fink, D. Child, V. A. Levchenko, V. I. Morgan, M. Curran, D. M. Etheridge and G. Elliott, Nucl. Instr. and Meth. in Phys. Res. B 172, 847 (2000). https://doi.org/10.1016/S0168-583X(00)00281-0

U. Heikkilä, J. Beer and V. Alfimov, J. Geophys. Res. Atmos 113, 1 (2008). https://doi.org/10.1029/2007JD009160

G. Korschinek, et. al., Nucl. Instr. and Meth. in Phys. Res. B 268, 187 (2010). https://doi.org/10.1016/j.nimb.2009.09.020

J. Chmeleff, F. von Blanckenburg, K. Kossert and D. Jakob, Nucl. Instr. and Meth. in Phys. Res. B 268, 192 (2010). https://doi.org/10.1016/j.nimb.2009.09.012

D. Fink, D. Child, V. A. Levchenko, V. I. Morgan, M. Curran, and A. M. Smith, Nucl. Instr. and Meth. in Phys. Res. B 172, 847 (2000). https://doi.org/10.1016/S0168-583X(00)00281-0

T. Yamagata, S. Sugihara, I. Morinaga, H. Matsuzaki, and H. Nagai, Nucl. Instr. and Meth. in Phys. Res. B 268, 1135 (2010). https://doi.org/10.1016/j.nimb.2009.10.117

H. Nagai, W. Tada, and T. Kobayashi, Instr. and Meth. in Phys. Res. B 172, 796 (2000). https://doi.org/10.1016/S0168-583X(00)00124-5

J. B. Pedro et al., Earth Plan. Sci. Lett. 355–356, 174 (2012). https://doi.org/10.1016/j.epsl.2012.08.038

F. Zhang, B. Zhang, and M. Yang, Atmos. Environ. 77, 178 (2013). https://doi.org/10.1016/j.atmosenv.2013.05.002

E. Gerasopoulos, C. S. Zerefos, C. Papastefanou, P. Zanis, and K. O’Brien, Atmos. Environ. 37, 1745 (2003). https://doi.org/10.1016/S1352-2310(03)00068-2

M. Yoshimori, Adv. Sp. Res. 36, 922 (2005). https://doi.org/10.1016/j.asr.2005.04.093

K. Ori and A. Sakajiri, Update of X ray and Gamma Ray Decay Data Standards for Detector Calibration and other applications. IAEA Pub. (2007).

K. De Los Ríos, C. Méndez-García, S. Padilla, C. Solís, E. Chávez, A. Huerta and L. Acosta. J. ofPhys: Conf. Ser. 1078, 012009 (2018). https://doi.org/10.1088/1742-6596/1078/1/012009

C. G. Méndez-García, et al., J. of Rad. and Nucl. Chem. 322, 1455 (2019). https://doi.org/10.1007/s10967-019-06841-x.

J. M. Kaste and M. Baskaran, Meteoric 7Be and 10Be as process tracers in the environment. In Handbook of environmental isotope geochemistry. Springer, (2012). https://doi.org/10.1007/978-3-642-10637-8_5

M. H. Wiggs, Measurement of Germanium Detector Efficiency, Notre Dame Physics REU (2009).

D. H. Peirson, J. of Geophys. Res. 68, 3831 (1963). https://doi.org/10.1029/JZ068i013p03831

K. K. Turekian L. K. Benninger and E. P. Dion, Adv. Earth. and Sp. Sci. 88, 5411 (1983). https://doi.org/10.1029/JC088iC09p05411

C. Schuler et. al., Adv. Earth. and Sp. Sci. 96, C9 (1991).

M. Baskaran, C. H. Coleman, P. H. Santschi, J. of Geophys. Res. 98, 20555 (1993). https://doi.org/10.1029/93JD02182

P. J. Wallbrink, A. S. Murray, J. of Environ. Rad. 25, 213 (1994). https://doi.org/10.1016/0265-931X(94)90074-4

Y. Ishikawa, H. Murakami, T. Sekine, K. Yoshihara, J. of Environ. Rad. 26, 19 (1995). https://doi.org/10.1016/0265-931X(95)91630-M

C. Ródenas, J. Gómez, L.S. Quindós, P.L. Fernández and J. Soto, Appl.Rad. and Isot. 48, 545 (1997). https://doi.org/10.1016/S0969-8043(96)00295-3

S. Caillet, P.Arpagaus, F. Monna and J. Dominik, J. of Environ. Rad. 53, 241 (2001). https://doi.org/10.1016/S0265-931X(00)00130-2

D. McNearyand M. Baskaran, Adv. Earth. and Sp. Sci. 108, D7 (2003).

J. H. Chao, C. C. Liu, I. C. Cho and H. Niu, Appl. Rad. and Isot. 89, 95 (2014). https://doi.org/10.1016/j.apradiso.2014.02.009

J. Sharib, D. N. F. Ahmad Tugi, N. F. Yusof, M. T. Ishak, NCL Collection Store, inis.iaea.org 48050375 (2015).

A. Taylor, M. J. Keith-Roach, A. R. Iurian, L. Mabit and W. H. Blake, Journal of Environmental Radioactivity 160, 80 (2016). https://doi.org/10.1016/j.jenvrad.2016.04.025

 

 

How to Cite
K. de los Ríos; C. Méndez-García; L. Acosta; R. García-Martínez; M. A. Martínez-Carrillo; M. E. Ortiz. Preliminary Measurements of Be-10/Be-7 Ratio in Rainwater for Atmospheric Transport Analysis. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 145-151.

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...