Wednesday 28 June 2017

Using Green Fluorescent Protein to Correlate Temperature and Fluorescence Intensity into Bacterial Systems

DOI
10.15415/jnp.2016.41005

AUTHORS

K. Beltrán, J. M. de Jesús-Miranda, J. A. Castro, L. A. Mandujano-Rosas, J. M. Paulin-Fuentes, D. Osorio-González

ABSTRACT

The unique and stunning spectroscopic properties of Green Fluorescent Protein (GFP) from the jellyfish Aequorea victoria, not to mention of its remarkable structural stability, have made it one of the most widely studied and used molecular tool in medicine, biochemistry, and cell biology. Its high fluorescent quantum yield is due to its chromophore, structure responsible of emitting green visible light when excited at 395 nm. Although it is noteworthy that there is enormous available information of the wonderful luminescent properties of GFP, the fact is that there are features and properties unexplored yet, particulary about its capabilities as molecular reporter in several biological processes. In this work, we used recombinant DNA technology to express the protein in bacteria; prepared the bacterial system both in liquid and solid media, and assembled an experimental set to expose those media to a laser beam; thereby we excited the protein chromophore and used emission spectroscopy in order to observe variations in fluorescence when the bacterial system is exposed to different temperatures.

KEYWORDS

green fluorescent protein; bacterial systems; bacterial temperature; spectroscopic properties

REFERENCES

  • Baker, M. Microscopy: Bright light, better labels. Technology feature. Nature. 478: 137-142. (2011). http://dx.doi.org/10.1038/478137a
  • Blow, N. Cell imaging: New ways to see a smaller world. Nature. 456: 825-828. (2008). http://dx.doi.org/10.1038/456825a
  • Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Green Fluorescent Protein as a Marker for Gene Expression. Science. 263(5148): 802-805. (1994). http://dx.doi.org/10.1126/science.8303295
  • Donner, J., Thompson, S., Kreuzer, M., Baffou, G. & Quidant, R. Mapping intracellular temper-ature using green fluorescent protein. Nano Letters. 12(4): 2107-2111. (2012). http://dx.doi.org/10.1021/nl300389y
  • Hernández, C.M. Caracterización funcional y ensamblaje membranal del canal de potasio shaker H4, y de segmentos truncados en la porción amino o carboxilo. Tesis de maestría. Un-iversidad de Colima, (2001).
  • Knop, M. & Edgar, B. A. Tracking protein turnover and degradation by microscopy: photo-switchable versus time-enconded fluorescent proteins. Open biology, (2014). doi:10.1098/rsob.140002 http://dx.doi.org/10.1098/rsob.140002
  • Prasher, D. C., Eckenrode, V. K., Ward, W. W., Pendergast, F. G. & Cormier, M. J. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111(2): 229-233. (1992). http://dx.doi.org/10.1016/0378-1119(92)90691-H
  • Tsien, R. Y. The green fluorescent protein. Annu Rev. Biochem. 67: 509-544. (1998). http://dx.doi.org/10.1146/annurev.biochem.67.1.509
  • Wang, S. & Hazelrigg, T. Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature. 369(6479): 400-403. (1994). http://dx.doi.org/10.1038/369400a0
  • Zhang C, Liu M. S. & Xing X. H. Temperature Influence on Fluorescence Intensity and En-zyme Activity of the Fusion Protein of GFP and Hyperthermophilic Xylanase. Appl. Microbiol. Biotechnol. 84(3): 511-517. (2009). http://dx.doi.org/10.1007/s00253-009-2006-8

Tuesday 27 June 2017

On the Equivalent Sources and Geometric Factor Calculation for a Circular Detection

DOI
10.15415/jnp.2016.41004

AUTHORS

Tony Viloria A., Luis Montiel, Laszlo Sajo-Bohus, Daniel Palacios

ABSTRACT

In all absolute measurements of the intensity of the radioactive materials and calibration of the detectors, it is essential the knowledge of the geometric efficiency. This work describes how to obtain the sources with different geometries and equal geometric efficiency (equivalent sources for geometric factor), corresponding to a linear, circumferential and circular homogeneous sources parallel to a circular detector. It is estimated the geometric factor of them by the Monte Carlo method. The results are compared with the published in the literature, thus confirming the validity of this method.

KEYWORDS

geometric factor, Monte Carlo method, equivalent source.

LINK:http://jnp.chitkara.edu.in/abstract.php?id=472#exactabstracts

REFERENCES

  • Abbas M.I., Analytical calculations of the solid anges subtended by a well-type detector at point and extended circular sources, Applied Radiation and Isotopes, 64, 1048-1056 (2006). http://dx.doi.org/10.1016/j.apradiso.2006.04.010
  • Conway J., Generalizations of Ruby’s formula for the geometric efficiency of a parallel-disk source and detector system, Nucl Instrum Methods A, 562, 146-153 (2006). http://dx.doi.org/10.1016/j.nima.2006.02.197
  • Conway J., Geometric efficiency for a circular detector and a ring source of arbitrary orientation and position, Nucl Instrum Methods A, 640, 99-109 (2011). http://dx.doi.org/10.1016/j.nima.2011.03.014
  • Galiano E. and Pagnutti C., An analytical solution for the solid angle subtended by a circular detector for a symetrically positioned linear source, Appl Radiat Isotopes, 64, 603-607 (2006). http://dx.doi.org/10.1016/j.apradiso.2005.12.006
  • Pommé S., Johansson L., Sibbens G. and Denecker B., An algorithm for the solid angle calculation applied in alpha-particle counting, Nucl Instrum Methods A, 505, 286-289 (2003). http://dx.doi.org/10.1016/S0168-9002(03)01070-2
  • Pommé S., A complete series expansion of Ruby’s solid-angle formula, NucI Instrum Methods A, 531, 616-620 (2004). http://dx.doi.org/10.1016/j.nima.2004.05.088
  • Pommé S., The solid angle subtended by a circular detector for a linear source, Appl Radiat Isotopes, 65, 724-727 (2007). http://dx.doi.org/10.1016/j.apradiso.2006.08.003
  • Pommé S., Jan Paepen. A series expansion of Conway’s generalized solid-angle formulas, Nucl Instrum Methods A, 579, 272-274 (2007). http://dx.doi.org/10.1016/j.nima.2007.04.054
  • Prata M.J., Solid angle subtended by a cylindrical detector at a point source in terms of elliptic integrals, Radiat Phys Chem, 67, 599-603 (2003). http://dx.doi.org/10.1016/S0969-806X(03)00144-0
  • Rizk R.A., Hathout A.M., and Hussein A.Z., On solid angle calculation NucI Instrum Methods A, Vol 245, 162-166, (1986).
  • Ruby L., Rechen J., A simple approach to the geometrical efficiency of a paralleldisk source and detector system, Nuclear Instruments and Methods, 58, 345-346 (1968). http://dx.doi.org/10.1016/0029-554X(68)90491-6
  • Sosa S. Integración numérica por el método de Monte Carlo (Para obtener el título de Licenciada en Matemáticas). Facultad de ciencias exactas y naturales. Universidad de Sonora. Hermosillo (México). 83 pp. 1997. http://lic.mat.uson.mx/tesis/99TesisSonia.PDF
  • Vega-Carrillo H., “Geometrical efficiency for a parallel disk source and detector”. Nuclear Instruents and Methods in Physics Reaserch A 371 (1996).
  • Viloria T., Soldovieri T., Bong. and Palacios D., “Sobre el ángulo sólido y las fuentes equivalentes”, Ciencia, Vol. 17, No. 4, 288-298, (2009).
  • Wielopolski L., “The Monte Carlo calculation of the average solid angle subtended by a right circular cylinder from distributed sources”. NucI Instrum Methods A, Vol. 143, 577-581, (1977). http://dx.doi.org/10.1016/0029-554X(77)90249-X
  • Zhang J., et al. “Development of software package for solid-angle calculations using the Monte Carlo method”, Nuclear Instruments and Methods in Physics Research A, 736, 40-45, (2014). http://dx.doi.org/10.1016/j.nima.2013.10.048

X-Ray Fluorescence Analysis of Fine Atmospheric Aerosols from a Site in Mexico City

DOI
10.15415/jnp.2016.41003

AUTHORS

A. E. Hernández-López, J. Miranda, J. C. Pineda

ABSTRACT

A study was performed in the Winter of the year 2015 in a Southwestern site in the MAMC (Ciudad Universitaria), collecting PM2.5 samples with a MiniVol. As a part of wider study focused to fully characterize aerosols at this site, an X-ray Fluorescence (XRF) spectrometer (based on an Rh X-ray tube) built to analyze environmental samples, was used to characterize the sample set. A total of 16 elements (Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, and Pb) were detected in most samples and mean concentrations were calculated. Cluster analysis was also applied to the elemental concentrations to find possible correlations among the elements.

KEYWORDS

XRF, atmospheric aerosols

REFERENCES

  • Díaz, R. V., López-Monroy, J., Miranda, J., Espinosa, A. A.. PIXE and XRF analysis of atmospheric aerosols from a site in the West area of Mexico City. Nuclear Instruments and Methods in Physics Research B, 318, 135-138, (2014). http://dx.doi.org/10.1016/j.nimb.2013.05.095
  • Espinosa, A., Reyes-Herrera, J., Miranda, J., Mercado, F., Veytia, M. A., et al. Development of an X-Ray fluorescence spectrometer for environmental science applications.InstrumentationScience&Technology, 40(6), 603-617, (2012). http://dx.doi.org/10.1080/10739149.2012.693560
  • Espinosa, J., Miranda, J., Pineda, J.C. Evaluación de la incertidumbre en cantidades correlacionadas: aplicación al análisis elemental de aerosoles atmosféricos. Revista Mexicana de Física, 56(1), 123-134, (2010).
  • Miranda, J., Crespo, I., Morales, M. A. Absolute principal component analysis of atmospheric aerosols in Mexico City. EnvironmentalScience and PollutionResearch 7(1), 14-18, (2000). http://dx.doi.org/10.1065/espr199910.006
  • Norma Oficial Mexicana NOM-025-SSA1-2014. Valores límites permisibles para la concentración de partículas suspendidas entre PM10 y PM2.5 en el aire ambiente y criterios de evaluación. Diario Oficial de la Federación, 20/08/2014.
  • Pope III, C. A., Burnett, R. T., Thurston, G. D., Thun, M. J., Calle, E. E., et al. Cardiovascular mortality and long term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation, 109, 71-77, (2004). http://dx.doi.org/10.1161/01.CIR.0000108927.80044.7F
  • Watson, J. G., Chow, J. C., Frazier, C. A. X-Ray fluorescence analysis of ambient air samples. In Gordon & Breach Science Publishers (Ed.), Elemental Analysis of Airborne Particles Volume 1 (pp. 67-97), (1999). Nertherlands: Amsterdam.

Experimental Setups for Single Event Effect Studies

DOI

AUTHORS

N. H. Medina, V. A. P. Aguiar, N. Added, F. Aguirre, E. L. A. Macchione, S. G. Alberton, M. A. G. Silve ira, J. Benfica, F. Vargas, B. Porcher

ABSTRACT

Experimental setups are being prepared to test and to qualify electronic devices regarding their tolerance to Single Event Effect (SEE). A multiple test setup and a new beam line developed especially for SEE studies at the São Paulo 8 UD Pelletron accelerator were prepared. This accelerator produces proton beams and heavy ion beams up to 107Ag. A Super conducting Linear accelerator, which is under construction, may fulfill all of the European Space Agency requirements to qualify electronic components for SEE.

KEYWORDS

Radiation effects, electronic devices, single event effects.

REFERENCES

  • Aguiar, V.A.P., et al., “Experimental Setup for Single Event Effects at Sao Paulo Pelletron Accelerator” Nucl. Inst. Meth. Phys. Res. B., 332, p. 397, 2014. http://dx.doi.org/10.1016/j.nimb.2014.02.105
  • Barnaby, H.J., “Total-Ionization-Dose Effects in Modern CMOS Technologies”, IEEE Transactions on Nuclear Science, vol. 53, no. 6, p. 3103-3121, 2006. http://dx.doi.org/10.1109/TNS.2006.885952
  • Barnaby, H.J., Schrimpf, R.D., Sternberg, A.L., Berth, V., Cirba, C.R. and Pease, R.L., “Proton Radiation Response Mechanisms in Bipolar Analog Circuits”, IEEE Transactions on Nuclear Science, vol. 48, no. 6, p. 2074–2080, 2001. http://dx.doi.org/10.1109/23.983175
  • Benfica, J., et al., “Analysis of SRAM-Based FPGA SEU Sensitivity to Combined Effects of Conducted EMI and TID”, IEEE, 2015,15th European Conf. on Radiation and Its Effects on Components and Systems (RADECS). Moscow, Russia. http://dx.doi.org/10.1109/RADECS.2015.7365584
  • Carlin, N., et al., Nucl. Inst. andMethods in PhysicsResearch A 540, 215-221, 2005.
  • Duzellier, S., “Radiation Effects on Electronic Devices in Space”, Aerospace Science and Technology 9, p. 93-99, 2005. http://dx.doi.org/10.1016/j.ast.2004.08.006
  • ESA/SCC Basic specification n. 25100: Single Event Effects Test Method and Guidelines, ESA, Noordwijk, Netherlands, 1995.
  • http://root.cern.ch/drupal/, last access 03/05/2016.
  • http://www.srim.org/, last access 03/05/2016.
  • Johnston, Allan. ReliabilityandradiationEffects inCompoundSemiconductors. World ScientificPublishingCo. Pte. Ltd., CaliforniaInstituteof Technology, USA. 2010.
  • Medina, N.H., et al., “First Successful SEE Measurements in Brazil”, IEEE Radiation Effects Data Workshop (REDW), 2014, Paris, France. http://dx.doi.org/10.1109/REDW.2014.7004571
  • Pelletron-LINAC Project, Internal Report DFN 01/1993.
  • Tambara, L., et al., “Heavy ion induced single event upsets testing of the 28 nm Xilinx Zynq-7000 all programmable SoC”. IEEE RadiationEffects Data Workshop (REDW), 2015, Moscow, Russia.
  • Vargas, F., private report, 2016.

Revisiting Natural Radiation in Itacaré and Guarapari Beaches

AUTHORS

M. A. G. Silveira, J. M. Oliveira, V A. P. Aguiar, N. H. Medina

ABSTRACT

Human beings are constantly exposed to several types of natural radiation. This paper aims to study the total external dose from northwestern Brazilian beach sands. The samples were collected at Prainha in Itacaré, Bahia, and Praia de AreiaPreta in Guarapari, Espírito Santo. Gamma spectrometry is a very useful technique to estimate the effective dose due to naturally occurring radionuclides, such as 40K and daughters of 238U and 232Th. In order to confirm the high activity present in these two regions, the effective dose due to each natural radionuclide was determined. Moreover, the Energy-Dispersive X-Ray Spectroscopy (EDS) microanalysis was used to characterize the soil composition and the minerals responsible for the high activity. In addition, the sand samples were separated in to magnetic and non-magnetic fractions in order to identify the contribution from each portion of the activity. Finally, the radionuclides and their dispersion in those places are consistent with previous studies, indicating effective doses above the world average that is between 0.3 mSv/year and 1.0 mSv/year.

KEYWORDS

Natural radionuclides, beach sands, gamma-ray spectrometry.

LINK: http://jnp.chitkara.edu.in/abstract.php?id=469#exactabstracts

REFERENCES


  • A. C. Freitas and A. S. Alencar, Journal of Environmental Radioactivity, 75, No. 2, pp. 211-223, (2004). http://dx.doi.org/10.1016/j.jenvrad.2004.01.002
  • A GUERRA DE GUARAPARI, http://especiais.gazetaonline.com.br/bomba/, 2015. Access: February, (2016).
  • A. H. Men T. O. Sanocha, Radiation Protection and Environment, 34, No. 3, pp. 178-184, (2012).
  • A. Malarica, C. N. Luce, R. Sogni, L. Achilli and S. Fab- bri, Proceedings of the La RadioattivitàAmbientalenelNuovoassettoIsti- tuzionalePiancenza, Bologna and Ravenna, pp. 225-230, (1994).
  • D. C. Vasconcelos, et al., World Journal of Nuclear Science and Technology, 3, 65-71, (2013). http://dx.doi.org/10.4236/wjnst.2013.32011
  • D. C. Vasconcelos, et al., Radiation Protection and Environment, 34, No. 3, pp. 178-184, (2012).
  • F. H. M. Medeiros. Master Thesis, Instituto de Física da USP (2003).
  • AEA - National Nuclear Data Center. Available in {http://www.nndc.bnl.gov/}. Access: February, 2016.
  • K. S. Krane, Introduction of Nuclear Physics,John Wiley & Sons,USA,(1988).
  • M. A. G. Silveira, N. H. Medina, L. L. Cardoso, Brazilian Journal of Radiation Sciences, 3, p.1/132 – 14, (2015). http://dx.doi.org/10.15392/bjrs.v3i1A
  • M. M. Matsumoto, M. A. G. Silveira; N. H. Medina, N. K. Umisedo.AIP Conference Proceedings.Melville, NY, USA: American Institute of Physics, 1034, p. 252-255, (2008). http://dx.doi.org/10.1152/ajpcell.00504.2007
  • N. Fujinami, T. Koga and H. Morishima, Proceedings of the 10th International Congress of the International Radiation Protection Association, Hiroshima, pp. 1-19, (2000).
  • P. Chiozzi, V. Pasquale and M. Verdoya, Radiation Measurements, 35, No. 2, 2002, pp. 147- 154. http://dx.doi.org/10.1016/S1350-4487(01)00288-8
  • R. M. Anjos et al., Marine Geology, 229, 29-43, (2006). http://dx.doi.org/10.1016/j.margeo.2006.03.001
  • R. Veiga, N. Sanches, R. M. Anjos, K. Macario, et al., Radiation Measurements, 41, No. 2, pp. 189-196, (2006). http://dx.doi.org/10.1016/j.radmeas.2005.05.001
  • UNSCEAR: Sources and Effects of Ionizing Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations, New York, (2000).
  • V. A. P. Aguiar, M. A. G. Silveira, N. H. Medina, R. H. Moreira, I. J. Sayeg, 17th International Microscopy Congress, Rio de Janeiro, (2010).

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...