Friday 4 September 2020

Ionizing Radiation, an Instrument in Chemical Evolution Studies: Scope and Perspectives

 

  • E Y Aguilar-Ovando
    Institute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), 04510 Mexico City, Mexico
  • A Negron-Mendoza
    Institute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), 04510 Mexico City, Mexico
  • M L Ramirez-Vazquez
    Institute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), 04510 Mexico City, Mexico; Postgraduate in Earth Sciences, National Autonomous University of Mexico (UNAM)
  • R C Acosta-Fernandez
    Chemistry Faculty, National Autonomous University of Mexico (UNAM)
Keywords: Chemical Evolution, Keto Acids, Ionizing Radiation

Abstract

The study of synthesis and stability of molecules in different environments it’s been part of chemistry evolution and origin of life studies for more than 70 years. Various kinds of ionizing radiation have been analyzed as possible sources of energy for the transformations undergone by the first organic molecules. Now experimental and computational simulation approaches continue with different groups of organic molecules, in search for more information that help us to understand and reconstruct somehow the mechanisms that took place on early Earth and space. In that line, this paper presents first approach of keto acids stability to ionizing radiation, an interesting group of molecules involved in the Krebs cycle and glycolysis. Preliminary results obtained by HPLC/UV analysis of irradiating aqueous solutions of 5 keto acids ranging from 3 to 6 carbons with a 60Co gamma ray source, using doses up to 53 kGy, show different stabilities and a general tendency of shifting the keto-enol equilibrium to the enol tautomer before decomposition.

References

L. Garzon and M. Garzon, Origins Of Life And Evolution of Biospheres 31, (2001).

J. O’Donnell and D. Sangster, Principles of Radiation Chemistry (Edward Arnold, London, 1970), p. 176.

G. Cooper, C. Reed, D. Nguyen, M. Carter and Y. Wang, Proceedings Of The National Academy Of Sciences 108, (2011).

A. Lehninger, D. Nelson and M. Cox, Principles Of Biochemistry, 6th ed. (W.H. Freeman, New York, 2013).

Z. Martins, Elements 7, (2011).

M. Sephton, Astronomy & Geophysics 45, (2004).

I. Draganic, Z. Draganic and J. Adloff, Radiation And Radioactivity On Earth And Beyond (CRC Press, Boca Raton, 1993).

R. Navarro-Gonzalez, A. Negron-Mendoza and G. Albarran, Journal Of Chromatography A 587, (1991).

A. Negron-Mendoza, G. Albarran and S. CastilloRojas, Journal of Radio analytical and Nuclear Chemistry 160, (1992). 

Issue
 
 
How to Cite
E Y Aguilar-Ovando; A Negron-Mendoza; M L Ramirez-Vazquez; R C Acosta-Fernandez. Ionizing Radiation, an Instrument in Chemical Evolution Studies: Scope and Perspectives. J. Nucl. Phy. Mat. Sci. Rad. A. 2018, 6, 99-101.
 

 

 

Agent Based Model of the Cytosine Radiation Induced Reaction

 

  • A L Rivera
    Institute of Nuclear Sciences. National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico; Complexity Science Center, National Autonomous University of Mexico (UNAM)
  • S Ramos-Beltran
    Complexity Science Center, National Autonomous University of Mexico (UNAM)
  • A Paredes-Arriaga
    Institute of Nuclear Sciences. National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico; Sciences Faculty, National Autonomous University of Mexico (UNAM), 04510 Mexico City, Mexico
  • A Negron-Mendoza
    Institute of Nuclear Sciences. National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico

Keywords:
Radiation induced chemical reactions, Cytosine, Kinetics of reactions, Agent-based model

Abstract

The stability of cytosine in aqueous solution was studied in the laboratory, simulating prebiotic conditions and using gamma radiation as an energy source, to describe cytosine behavior under radiation. For a better understanding of the radiation-induced processes, we proposed a mathematical model that considers chemical reactions as nonlinear ordinary differential equations. The radiolysis can be computationally simulated by an agent-based model, wherein each chemical species involved is considered to be an agent that can interact with other species with known reaction rates. The radiation is contemplated as a factor that promotes product formation/destruction, and the temperature determines the diffusion speed of the agents. With this model, we reproduce the changes in cytosine concentration obtained in the laboratory under different irradiation conditions.

 

References

M. Colín-García, A. Negrón-Mendoza, S. RamosBernal, International Journal of Astrobiology, 9, 279– 288, (2009). http://dx.doi.org/10.1089/ast.2006.0117

H. G. Hill, J. A. Nuth, Astrobiology, 3(2), 291–304, (2003). https://doi.org/10.1089/153110703769016389

A. Negrón-Mendoza, C. Ponnamperuma, Photochemistry and Photobiology, 36(5), 595–597, (1982). https://doi.org/10.1111/j.1751-1097.1982.tb04421.x

A. Negrón-Mendoza, G. Albarran, S. Ramos, E. Chacon, Journal of Biological Physics, 20(1), 71–76, (1995). http:/dx.doi.org/10.1007/BF00700422.

S. Castillo, A. Negrón-Mendoza, Z. D. Draganic, I. G. Draganic, Radiation Physics and Chemistry, 26, 437–443, (1985). https://doi.org/10.1016/0146-5724(85)90232-8

J. Cruz-Casta-eda, A. Negrón-Mendoza, D. Frías, M. Colín-García, A. Heredia, et al., Journal of Radioanalytical and Nuclear Chemistry, 304(1), 219–225, (2015). https://doi.org/10.1007/s10967-014-3711-z

S. L. Miller, Science, 117(3046), 528–529, (1953). https://doi.org/10.1126/science.117.3046.528

W. Gilbert, Nature, 319(6055), 618, (1986). https://doi.org/10.1038/319618a0

G. Sanchez-Mejorada, D. Frias, A. Negrón-Mendoza, S. Ramos-Bernal, Radiation Measurements, 43(2), 287–290, (2008). https://doi.org/10.1016/j.radmeas.2007.11.038

V. P. Zhdanov, Surface Science Reports, 45(7), 231–326, (2002). https://doi.org/10.1016/S0167-5729(01)00023-1

A. L. Rivera, S. Ramos-Bernal, A. Negrón-Mendoza, J. Nucl. Phys. Mat. Sci. Rad. A., 5(1), 15–23, (2017). https://doi.org/10.15415/jnp.2017.51002

A. L. Rivera, S. Ramos-Bernal, A. Negrón-Mendoza, J. Nucl. Phys. Mat. Sci. Rad. A., 4(1), 149–157, (2016). https://doi.org/10.15415/jnp.2016.41015

A. A. Berryman, Ecology, 75, 1530–1535, (1992). https://doi.org/10.2307/1940005

A. Paredes Arriaga, Estabilidad de la guanina y citosinaendisoluciónacuosa y suspensión con Montmo rillonitasódica: simulaciones de charcasen la tierraprimitive (Stability of guanine and cytosine in aqueous solution and suspension with sodium Montmorillonite: simulations of ponds in the primitive land). Thesis, Universidad Nacional Autónoma de México, Mexico (2018).

A. L. Meléndez-López, S. Ramos-Bernal, M. L. RamírezVázquez, AIP Conference Proceedings 1607, 111, (2014). https://doi.org/10.1063/1.4890710

L. Lang, Absorption spectra in the ultraviolet and visible regions, Vol. 1 (Academic Press, New York, 1961).

 

Issue
 
 
 
How to Cite
A L Rivera; S Ramos-Beltran; A Paredes-Arriaga; A Negron-Mendoza. Agent Based Model of the Cytosine Radiation Induced Reaction. J. Nucl. Phy. Mat. Sci. Rad. A. 2018, 6, 93-97.
 

Gamma Dosimetry Using Some Dyes in Organic Solvents Solutions at 295 and 77 K

 

  • A L Melendez-Lopez
    Institute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico; Master’s and PhD Program in Chemical Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico
  • A Paredes-Arriaga
    Institute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico
  • J Cruz-Castaneda
    Institute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico; Master’s and PhD Program in Chemical Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico
  • A Negron-Mendoza
    Institute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico
  • S Ramos-Bernal
    Institute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico
  • M Colin-Garcia
    Institute of Geology, National Autonomous University of Mexico (UNAM)
  • A Heredia
    Institute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico

     
Keywords: dyes, linearity dose -response, chemical dosimeter, low temperatures

Abstract

The aim of this work is to study the behavior under irradiation of different dyes (green malachite, methyl orange, red cresol, and bromothymol blue) in organic solvents (acetone and methanol) at different gamma doses and different temperatures to propose them as possible dosimeters for low-temperature applications. For this purpose, organic dissolutions were irradiated with gamma rays in the kiloGray (kGy) range at 77 and 295 K, and the color bleaching of the solutions was followed spectrophotometrically (UV-Vis range). The response curves at different temperatures show the linear range interval from 10 to 40 kGy with correlation coefficients of 0.999 and 0.998 for some systems. This is the main reason to continue carrying out studies that allow the proposal of these systems as chemical dosimeters.

 

References

F. Attix, Introduction to Radiological Physics and Radiation Dosimetry (Wiley-VCH Verlag GmbH & Co, Weinheim, 1986). https://doi.org/10.1002/9783527617135

J. O’Donnell and D. Sangster, Principles of Radiation Chemistry (Edward Arnold, United Kingdom), (1970).

F. Diehl, Safety of irradiated food (Marcel Dekker, New York), (1995).

S. Lansdowne, R. Gilbert, D. Napper and D. Sangster, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry In Condensed Phases 76, (1980).

A. Negron-Mendoza, S. Ramos-Bernal, M. ColinGarcia and A. Heredia, RAD Association Journal (2016).

W. Mclaughlin and M. Desrosiers, Radiation Physics And Chemistry 46, (1995).

M. Rauf and S. Ashraf, Journal of Hazardous Materials 166, (2009).

A. Swallow and A. Charlesby, Radiation Chemistry of Organic Compounds (Elsevier Science, Burlington), (2013).

M. Barakat, K. El-Salamawy, M. El-Banna, M. AbdelHamid and A. Abdel-Rehim Taha, Radiation Physics and Chemistry 61, (2001).

S. Gafar, M. El-Kelany and S. El-Shawadfy, Journal Of Radiation Research and Applied Sciences (2018).

B. Gupta and E. Hart, Radiation Research 48, (1971).

J. Spinks and R. Woods, An Introduction to Radiation Chemistry (Wiley, New York), (1990). 

 

 

How to Cite
A L Melendez-Lopez; A Paredes-Arriaga; J Cruz-Castaneda; A Negron-Mendoza; S Ramos-Bernal; M Colin-Garcia; A Heredia. Gamma Dosimetry Using Some Dyes in Organic Solvents Solutions at 295 and 77 K. J. Nucl. Phy. Mat. Sci. Rad. A. 2018, 6, 87-92.

Tuesday 1 September 2020

Shape Coexistence in Hot Rotating 100Nb

  • Mamta AggarwalDepartment of Physics, University of Mumbai, Kalina Campus, Mumbai 400 098.
Keywords: Statistical theory, shape transition, A= 80-100, level density parameter, shape coexistence

Abstract

Temperature and angular momentum induced shape changes in the well deformed 100Nb have been investigated within the theoretical framework of Statistical theory combined with triaxially deformed Nilson potential and Strutinsky prescription. Two shape coexistence, one in the ground state of 104Nb between oblate and triaxial shapes and another one between oblate and rarely seen prolate non-collective shapes in excited hot rotating 100Nb at the mid spin values around 14-16h are reported for the first time. The level density parameter indicates the influence of the shell effects and changes drastically at the shape transition. The band crossing is observed at the sharp shape transition.

References

Aggarwal, Mamta, Phys. Lett. B 693, 489 (2010).

Aggarwal, Mamta, Phys. Rev. C 90, 064322 (2014).

Rajasekaran, M., Rajasekaran, T. R., and Arunachalam, N., Phys. Rev. C 37, 307 (1988).

Bethe, H., Rev. Mod. Phys. 9, 69 (1937).

Ericson, T., Adv. Phys. 9, 425 (1960).

A. Bohr and B. R. Mottelson, in Nuclear Structure, Vol. I, P 281 (Benjamin, New York, 1969).

Aggarwal, M., Int. J. of Mod. Phys. E 17, 1091 (2008).

Rajasekaran, M., Rajasekaran, T. R., and Arunachalam, and Devanathan, V., Phys. Rev. Lett. 61, 2077 (1988).

Aggarwal, M., and Kailas, S., Phys. Rev. C 81, 047302 (2010).

Wallace, R. K. , and Woosely, S. E., Astrophys. J. Suppl. 45, 389 (1981).

Naoki Tajima and Norifumi Suzuki, Phys. Rev. C 64, 037301, (2001).

Lalazissis, G. A., Sharma, M. M., and Ring, P. , Nucl. Phys. A 597, 35 (1996).

Ignatyuk A. , et al. Nucl. Phys. A 346, 191 (1980).

Newton, J. O. , et. al., Phys. Rev. Lett. 46, 1383 (1981).

Lhersonneau,G., et. al. , Phys, Rev. C 49 (1994) 1379.

Wood, J.L, et. Al, Phys. Rep. 215 (1992) 101.

Aggarwal, M., Phys. Rev. C 89, 024325 (2014).

Saxena, G., et al., Proceedings of the DAE Symp. on Nucl. Phys. 62, 112 (2017).

Aggarwal, M. and Saxena, G., Proceedings of the DAE Symp. on Nucl. Phys. 62, 292 (2017).

Aggarwal, M., and Kailas, S., Proceedings of the DAE Symp. on Nucl. Phys. 62, 96 (2017).

Aggarwal, M., Phys. Lett. B (communicated) (2018).

Nyako, B. M., et al., Phys. Rev. C 60, 024307 (1999).

Dubuc, J. et al., Phys. Rev. C 37, 1932 (1988).

A. L. Goodman, Phys. Rev. C 37, 2162 (1988).

P. Moller et al., At. Data Nucl. Data Table, 59, 185 (1995).

Frauendorf, S. Rev. Mod. Phy., 73, 463 (2001).

Goodman, A. L. , Phys. Rev. C 35, 2338 (1987).

Aggarwal, M., Journal of Nucl. Phys. Material Sci. Radiation and Applications (JNPMSRA) 3, No. 2, 179 (2016).

K. Banerjee, et. al., Phys. Rev. C 85 (2012) 064310.

M. Gohil et. al., Phys. Rev. C 91 (2015) 014609; EPJ Web of Conf. 66 (2014) 03073.

Balaram Dey et. al.,Phys. Rev. C 91 (2015) 044326


How to Cite
Mamta Aggarwal. Shape Coexistence in Hot Rotating 100Nb. J. Nucl. Phy. Mat. Sci. Rad. A. 20185, 291-298.

Thursday 6 August 2020

Dose Calibration and Track Diameter Distribution for 241Am-Be Neutron Source, Using CR-39 Nuclear Track Methodology

 

  • J. S. BogardOak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831-6480, USA
  • J. I. GolzarriInstitute of Physics, National Autonomous University of Mexico (UNAM), 04520 Mexico City, Mexico
  • G. EspinosaInstitute of Physics, National Autonomous University of Mexico (UNAM), 04520 Mexico City, Mexico
Keywords: Americium beryllium neutron source, track density imaging, CR-39 Nuclear Track, chemical etching process

Abstract

In neutron detection, the more common method is using electronic instrumentation associate with Bonner spheres, however, currently the Nuclear Tracks Methodology (NTM) is coming popular because of the simplicity, flexibility in size of the detector, no requirement for sophisticated instrumentation and installation, and low cost. In this work, a preliminary result of the dose calibration and track diameter distribution of Americium-Beryllium (241Am-Be) source using Nuclear Track Methodology is presented. As material detector, CR-39 polycarbonate, cut in 1.8 × 0.9 cm2 chips was chosen, and two step chemical etchings after neutron exposure was used to develop the tracks. The irradiations were made in environmental normal conditions, in the ORNL neutron calibration facilities. The CR-39 chips were placed in a phantom, with 3mm plastic (Lexan) sheet in between the source and detectorsto increase the proton generation. The total track density and track diameter distribution was performing in a Counting and Analysis Digital Image System (CADIS), developed at the Institute of Physics of the University of Mexico UNAM. The results are compared with a standard survey instrument and energy reference spectra of the International Atomic Energy Agency (IAEA).


References

A. M. Abdalla, O. Ashraf, Y. S. Rammah, A. H. Ashry, M. Eisa, et al., Radiation Physics and Chemistry, 108, 24–28 (2015). https://doi.org/10.1016/j.radphyschem.2014.11.006

M. E. Anderson and R. A. Neff, Nuclear Instruments and Methods, 99, 231–235 (1972). https://doi.org/10.1016/0029-554X(72)90781-1

K. Becker, Solid State Dosimetry. CRC Press (1973).

L. W. Brackenbenbush, D. E. Hadlock, N. M. A. Parkhurst and L. G. Faust, Nuclear Tracks and Radiation Measurements, 8, 313–315 (1984). https://doi.org/10.1016/0735-245X(84)90111-X

F. Castillo, G. Espinosa, J. I. Golzarri, D. Osorio, J. Rangel, et al., Radiation Measurements, 50, 71–73 (2013). https://doi.org/10.1016/j.radmeas.2012.09.007

S. Cavallaro, Review of Scientific Instrumentations, 86, 036103 (2015). https://doi.org/10.1063/1.4915502

F. D’Errico, D. A. A. Vasconcelos, R. Ciolini and E. Hulber, Radiation Measurements, 106, 607–611 (2017).

F. D’Errico M. Weiss, M. Luszik-Bhadra, M. Matzke, L. Bernardi, et al., Radiation Measurements, 28, 823–830 (1997). https://doi.org/10.1016/S1350-4487(97)00191-1

A. R. El-Sersy, Nuclear Instruments and Methods in Physics Research, A 618, 234–238 (2010). https://doi.org/10.1016/j.nima.2010.02.103

A. R. El-Sersy, N. E. Khaled and S. A. Eman, Nuclear Instruments and Methods in Physics Research, B215, 443–448 (2004). https://doi.org/10.1016/j.nimb.2003.08.035

G. Espinosa, Trazas Nucleares en Solidos, UNAM, Mexico City, Mexico (1994).

G. Espinosa, R. B. Gammage, K. E. Meyer and C. S. Dudney, Radiation Protection Dosimetry, 66, 363–366 (1996). https://doi.org/10.1093/oxfordjournals.rpd.a031754

R. L. Fleisher, P. B. Price and R. M. Walker, Nuclear Tracks in Solids: Principles and Application. University of California Press.(1975).

R. B. Gammage and G. Espinosa, Radiation Measurements, 28, 835–838 (1997). https://doi.org/10.1016/S1350-4487(97)00193-5

J. A. B. Gibson and E. Piesch, Technical Reports Series No. 252, International Atomic Energy Agency, Vienna (1985).

D. E. Hankins and J. Westermark, Radiation Protection Dosimetry, 20, 109–112 (1987). https://doi.org/10.1093/oxfordjournals.rpd.a080015

J. R. Harvey, R. J. Tanner, W. G. Alberts, D. T. Bartlett, E. K. A. Piesch, et al., Radiation Protection Dosimetry, 77, 267–304 (1998). https://doi.org/10.1093/oxfordjournals.rpd.a032322

Handbook on Nuclear Data for Borehole Logging and Mineral Analysis. Technical Report Series No. 357, International Atomic Energy Agency (IAEA), Vienna. (1993).

International Atomic Energy Agency. IAEA Technical Reports Series No. 403. Supplement to Technical Reports Series No. 318. Vienna, Austria. (2001).

M. Izerrouken, J. Skvarc and R. Ilic, Radiation Measurements, 37, 21–24 (2003). https://doi.org/10.1016/S1350-4487(02)00131-2

J. Jakes and H. Schraube, Radiation Protection Dosimetry, 70(1-4) 133–138 (1997). https://doi.org/10.1093/oxfordjournals.rpd.a031928

G. C. Lowenthal and P. L. Airey, Practical applications of radioactivity and nuclear radiations. Cambridge University Press, England. (2001). https://doi.org/10.1017/CBO9780511535376

B. Milenkovic, N. Stevanovic, D. Nikezic and D. Kosutic, Applied Radiation and Isotopes, 90, 225–228 (2014). https://doi.org/10.1016/j.apradiso.2014.04.008

G. S. Sahoo, S. P. Tripathy, S. Paul, S. C. Sharma, D. S. Joshi, et al., Applied Radiation and Isotopes, 101, 114–121 (2015). https://doi.org/10.1016/j.apradiso.2015.04.002

K. Turek and G. Dajko, Radiation Measurements, 34, 625–628 (2001). https://doi.org/10.1016/S1350-4487(01)00242-6


Issue


How to Cite
J. S. Bogard; J. I. Golzarri; G. Espinosa. Dose Calibration and Track Diameter Distribution for 241Am-Be Neutron Source, Using CR-39 Nuclear Track Methodology. J. Nucl. Phy. Mat. Sci. Rad. A. 20186, 77-80.

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...