Monday 7 September 2020

Determination of the Thermal Neutron Flux by Measuring Gamma Radiations with High and Low Resolution Detectors

 

  • M. M. Hosamani
    Department of Studies in Physics Karnatak University, Dharwad, India.
  • A. S. Bennal
    Department of Studies in Physics Karnatak University, Dharwad, India.
  • N. M. Badiger
    Department of Studies in Physics Karnatak University, Dharwad, India.
Keywords: Thermal neutron flux, Neutron irradiation, Indium foil activation, on; Cadmium difference method

Abstract

Thermal neutron flux (Фth) of Americium-Beryllium (Am-Be) neutron source has been measured by adopting the foil activation method. The neutrons emitted from Am-Be source are used to activate the indium-115 (115In) foil. The gamma radiations emitted from the activated isomer 116m1In are measured with NaI(Tl) and HPGe detectors. The thermal neutron flux is measured by adopting the cadmium (Cd) foil difference technique in which the Cd foil placed in front of the source to prevent the thermal neutrons from entering into the indium foil. The neutron flux is determined by measuring the gamma radiation emitted from indium foil using a low and high energy resolution NaI(Tl) and HPGe detectors respectively. The measured thermal neutron flux obtained from both detectors has been compared and found that the Фth does not depend on the resolution and type of the detectors used in the present investigations.

References

K. S Krane, Introductory nuclear physics, John Wiley & Sons publication`s: New York, (1988).

I. Murata et al., Progress in Nuclear Science and Technology, 4, 345 (2014).https://doi.org/10.15669/pnst.4.345.

T. S. Mudhole and N. Umakantha, American Journal of Physics, 43(1), 104 (1975). https://doi.org/10.1119/1.10038.

P. Akhlaghi et al., Pramana-Journal of Physics, 80(5), 873 (2013). https://doi.org/10.1007/s12043-013-0524-5.

S. S. Grazhulene et al., Journal of Radioanalytical and Nuclear Chemistry, 158(1), 149 (1992). https://doi.org/10.1007/BF02034781.

H. Kluge and K. Weise, Radiation protection dosimetry, 2(2), 85 (1982). https://doi.org/10.1093/oxfordjournals.rpd.a080571.

A. Trkov et al., Nuclear Instruments and Methods in Physics Research A, 610, 553 (2009). https://doi.org/10.1016/j.nima.2009.08.079.

E. D. Klhma and R. H. Ritchie, Physics Review, 87, 167 (1952). https://doi.org/10.1103/Phys-Rev.87.167.

B. Dahmani and A. Kadum, International Journal of Technology Enhancement and Emerging Engineering Research, 2(6), 45 (2014).

IAEA, International Atomic Energy Agency Vienna, (2007).

G. Wurdiyanto et al., Journal of Nuclear Science and Technology, 32(11), 1090 (1995). https://doi.org/10.1080/18811248.1995.9731823.

I. F. Gonalves et al., Journal of Radioanalytical and Nuclear Chemistry, 261(03), 637 (2004). https://doi.org/10.1023/B:JRNC.0000037107.17274.16.

K. W. Geiger and L. Van Der Zwan, Nuclear Instruments and Methods, 131, 315 (1975). https://doi.org/10.1016/0029-554X(75)90336-5

 

 

How to Cite
M. M. Hosamani; A. S. Bennal; N. M. Badiger. Determination of the Thermal Neutron Flux by Measuring Gamma Radiations With High and Low Resolution Detectors. J. Nucl. Phy. Mat. Sci. Rad. A. 2019, 6, 187-193.

Mini Subcritical Nuclear Reactor

 

  • Hector Rene Vega-Carrillo
    Academic Unit of Nuclear Studies of the University Autonomous of Zacatecas C. Cipres 10, Fracc. La Peñuela, Zacatecas, Zac. Mexico
  • V. P. Singh
    Karanatak University, Dharwad, Karnataka, India
  • Claudia Rafela Escobedo-Galván
    Center of Scientific and Technological Studies No 18, Blvd. del Bote s/n. Cerro del Gato, Ejido la Escondida. 98160 Zacatecas, Zac. Mexico.
  • Diego Medina Castro
    Academic Unit of Nuclear Studies of the University Autonomous of Zacatecas C. Cipres 10, Fracc. La Peñuela, Zacatecas, Zac. Mexico.
  • Arturo Agustin Ortiz Hernandez
    Polytechnic University of Zacatecas, Plan de Pardillo s/n. Zona Industrial. Fresnillo, Zac. Mexico
  • Teodoro Rivera-Montalvo
    Research Center in Applied Science and Advanced Technology-IPN Legaria unit, Av. Legaria 694, Col. Irrigación. 11500 Ciudad de Mexico. Mexico.
  • Segundo Agustín Martínez-Ovalle
    Pedagogical and Technological University of Colombia, Tunja, Colombia
Keywords: Subcritical nuclear reactor, Nuclear Chicago, Monte Carlo, Neutron spectrum, keff.

Abstract

A mini subcritical nuclear reactor was designed using Monte Carlo methods. The reactor has light water as moderator, natural uranium as fuel, and a 239PuBe neutron source. In the design uranium fuel was modeled in an arrangement of concentric rings: 8.5, 14.5, 20.5 26.5, 32.5 cm-inner radius, 3 cm-thick, and 36 cm-high. Different models were made from a single ring of natural uranium to five rings. For each case, the neutron spectra, the neutron fluence distribution, the effective multiplication factor, the amplification factor, and the reactor power were estimated. The ambient dose equivalent rate outside the mini reactor was also estimated. The maximum value for the keff (0.78) was obtained when five rings of fuel were used; this value is close to 0.86 which belongs to a Nuclear Chicago subcritical reactor which requires almost twice the amount of uranium than the mini subcritical reactor.

 

References

L. Geng, T. Liu, K. Zhou, G. Yang, G. Energy Policy, 113, 87 (2018).

O. Yue, J. He, S. Zhi, H. Dong, Annals Nuclear Energy, 111, 635 (2018).

S. Suman, Journal of Cleaner Production, 181, 166 (2018).

M. Abu-Khander, M. Marden, Progress in Nuclear Energy, 51, 225 (2009).

N. Nifenecker, S. David, J. Loiseaux, O. Meplan, Nuclear Instruments and Methods in Physics Research A, 463, 428 (2001).

F- Faghihia, S. Mirvakili, Nuclear Engineering and Design, 239, 1000 (2009).

H.R. Vega-Carrillo, I.R. Esparza-Garcia, A. Sanchez, Annals of Nuclear Energy, 75, 101 (2015).

M. Salvatores, I. Slessarev, V. Berthou, Progress in Nuclear Energy, 38, 167 (2001).

W.M. Schikorr, Nuclear Engineering and Design, 210, 95 (2001).

G. Stange, T. Mackie, M.A. Corradini, Journal of Radioanalytical and Nuclear Chemistry, 305, 23 (2015).

A. Nuttin, D. Heuer, A. Billebaud, R. Brissot, C. Le Brun, Progress in Nuclear Energy, 46, 77 (2005).

L.X. González-Puin, H.R. Vega-Carrillo, S.A. Martinez-Ovalle, Rev. Cien. Des. 4, 7 (2014).

S. Kamalpour, H. Khalafi, S.M. Mirvakili, Progress Nuclear Energy, 73, 107 (2014).

H.R. Vega-Carrillo, Teoría de Reactores Nucleares (Editorial Académica Española, Saarbrucken, Germany, 2012).

A. Lafuente, M. Piera, Annals of Nuclear Energy, 38, 910 (2011).

H.R. Vega-Carrillo, V.M. Hernández-Dávila, T. Rivera, A. Sánchez, Radiation Physics and Chemistry, 95, 122 (2014).

Y. Gohar, D.L. Smith, Report ANL-10/05, Argonne National Laboratory (2010).

S. Dawahra, K. Khattab, G. Saba, Annals of Nuclear Energy, 63, 594 (2014).

V. Gulik, V. A.H. Tkaczyk, Nuclear Engineering and Design, 270, 133 (2014).

X-5 Monte Carlo team, LA-UR-03-1987, Los Alamos National Laboratory (2003).

ICRP, Ann. ICRP, 26, 199 (1996).

P. Koseoglou, E. Vagena, S. Stoulos, M. Manolopoulou, Radiation Effects and Defects in Solids, 171, 766 (2016).

A. Asuncion-Astronomo, Z. Stancar, T. Goricanec, L. Snoj, Nuclear Engineering and Technology, 51, 2, pp. 337-344 (2019). https://doi.org/10.1016/j.net.2018.09.025.

M.I. Radaideh, I. Jarrah, S. Malkawi, A. Khateeb, I. Al-Issa, Progress in Nuclear Energy, 108, 43 (2018).

L.P. Tucker, S. Usman, A. Alajo, A. Nuclear Technology, 194, 97 (2016).

 

How to Cite
Hector Rene Vega-Carrillo; V. P. Singh; Claudia Rafela Escobedo-Galván; Diego Medina Castro; Arturo Agustin Ortiz Hernandez; Teodoro Rivera-Montalvo; Segundo Agustín Martínez-Ovalle. Mini Subcritical Nuclear Reactor. J. Nucl. Phy. Mat. Sci. Rad. A. 2019, 6, 179-185.

Response to Neutrons and γ-rays of Two Liquid Scintillators

 

  • Hector Rene Vega-Carrillo
    Academic Unit of Nuclear Studies of the University Autonomous of Zacatecas, C. Cipres 10,Fracc. La Peñuela, 98060 Zacatecas, Zac. Mexico.
  • Martha Isabel Escalona-Llaguno
    Academic Unit of Nuclear Studies of the University Autonomous of Zacatecas, C. Cipres 10,Fracc. La Peñuela, 98060 Zacatecas, Zac. Mexico.
  • Luis Hernandez-Adame
    CONACyT - Center for Biological Research of the Northwest, S.C., Av. Instituto Politecnico Nacional 195, Col. Playa Palo de Santa Rita Sur 23090 La Paz, BCS. Mexico
  • Sergio M. Sarmiento-Rosales
    Academic Unit of Nuclear Studies of the University Autonomous of Zacatecas, C. Cipres 10,Fracc. La Peñuela, 98060 Zacatecas, Zac. Mexico.
  • Claudia A. Márquez-Mata
    Academic Unit of Nuclear Studies of the University Autonomous of Zacatecas, C. Cipres 10,Fracc. La Peñuela, 98060 Zacatecas, Zac. Mexico.
  • Guillermo E. Campillo-Rivera
    Academic Unit of Nuclear Studies of the University Autonomous of Zacatecas, C. Cipres 10,Fracc. La Peñuela, 98060 Zacatecas, Zac. Mexico.
  • V.P. Singh
    Karanatak University, Dharwad, Karnataka, India-580003
  • Teodoro Rivera-Montalvo
    Center for Research in Applied Science and Advanced Technology - Legaria Unit of IPN, Av. Legaria 694, Col. Irrigación, 11500 Ciudad de Mexico, Mexico
  • Segundo Agustin Martínez-Ovalle
    Pedagogical and Technological University of Colombia, Tunja, Colombia
Keywords: Response, Liquid Scintillator, Detectors, neutrons, Gamma Rays, UltimaGold, Optiphase

Abstract

UltimaGoldTM AB and OptiphaseTrisafe are two liquid scintillators made by Perkin Elmer and EG & G Company respectively. Both are commercially promoted as scintillation detectors for α and β particles. In this work, the responses to γ-rays and neutrons of UltimaGoldTM AB and OptiphaseTriSafe liquid scintillators, without and with reflector, have been measured aiming to use these scintillators as γ-rays and neutron detectors. Responses to γ-rays and neutrons were measured as pulse shape spectra in a multichannel analyzer. Scintillators were exposed to gamma rays produced by 137Cs, 54Mn, 22Na and 60Co sources. The response to neutrons was obtained with a 241AmBe neutron source that was measured to 25 and 50 cm from the scintillators. The pulse height spectra due to gamma rays are shifted to larger channels as the photon energy increases and these responses are different from the response due to neutrons. Thus, UltimaGoldTM AB and OptiphaseTrisafe can be used to detect γ-rays and neutrons.

 

References

V.A. Baskov and V.V. Polyansky, Bull. Lebedev Phys. Inst., 45, 123 (2018).

H.R. Vega-Carrillo, V.M. Hernández-Dávila, T. Rivera and A. Sánchez, Rad. Phys. Chem., 95, 122 (2014). https://doi.org/10.1016/j.radphyschem.2013.05.001.

J.C. McDonald, B.R.L. Siebert and W.G. Alberts, Nucl. Instrum. Meth. Phys. Res. A 476, 347 (2002). https://doi.org/10.1016/S01689002(01)01460-7.

G.F. Knoll, Radiation Detection and Measurement. (John Wiley & Sons, Michigan, 2010).

A.J. Peurrung, Nucl. Instrum. Meth. Phys. Res. A 443, 400 (2000).

https://doi.org/10.1016/S0168-9002(99)01165-1.

A.V. Zhirkin et al., Nucl. Fus., 57, 066044 (2017). https://doi.org/10.1088/1741-4326/aa69d4.

T. Nishitani et al., Fus. Eng. Des., 136, 210 (2018). https://doi.org/10.1016/j.fusengdes.2018.01.053.

T. Nishitani, K. Ogawa and M. Isobe, Fus. Eng. Des., 123, 1020 (2017). https://doi.org/10.1016/j.fusengdes.2017.02.038.

] L. Liu, A. Liu, S. Bai, L. Lv, P. Jin and X. Ouyang, Sci. Rep., 7, 13376 (2017). https://doi.org/10.1038/s41598-017-13715-3.

M.J. Devlin et al., Nucl. Data Sheets, 148, 322 (2018). https://doi.org/10.1016/j.nds.2018.02.008.

T. Zhu et al., Nucl. Instrum. Meth. Phys. Res. A 848, 137 (2017). https://doi.org/10.1016/j.nima.2016.12.016.

RV.D. Ryzhikov, S.V. Naydenov, T. Pochet, G.M. Onyshchenko, L.A. Piven and C.F. Smith, IEEE Trans. Nucl. Sci., 65, 2547 (2018). https://doi.org/10.1109/TNS.2018.2825642.

K.A. Guzmán-García, H.R. Vega-Carrillo, E. Gallego, J.A. González, R. Méndez,-Villafañe, A. Lorente and S. Ibañez-Fernandez, Rad. Meas., 107, 58 (2017). https://doi.org/10.1016/j.radmeas.2017.11.001.

K.A. Guzmán-García, H.R. Vega-Carrillo, E. Gallego, A. Lorente, R. Méndez-Villafañe J.A. González and S. Ibañez-Fernandez, Appl. Rad. Isot., 117, 58 (2016). https://doi.org/10.1016/j.apradiso.2016.03.015.

F. D´Errico, A. Chierici, M. Gattas-Sethi, R. Goldston and A. Glaser, Rad. Prot. Dosim., 180, 210 (2018). https://doi.org/10.1093/rpd/ncy037.

O.V. Hoey, F. Vanhavere and L. Verbraeken, Rad. Prot. Dosim., 180, 85 (2018). https://doi.org/10.1093/rpd/ncx224.

V. Gracanin et al., Rad. Meas., 106, 391 (2017). https://doi.org/10.1016/j.radmeas.2017.01.004.

F.D. Amaro, C.M.B. Monteiro, J.M.F. dos Santos and A. Antognini, Sci. Rep., 7, 41699 (2017). https://doi.org/10.1038/srep41699.

J.L. Tain et al., Acta Phys. Pol. B 49, 417 (2018). https://doi.org/10.5506/APhysPolB.49.417.

Miramonti, L., International Journal of Modern Physics A, 32, 1743010 (10 pages) (2017). https://doi.org/10.1142/S0217751X17430102.

P. Agnes et al., J. Instrum., 12, T12004 (2017). https://doi.org/10.1088/1748-0221/12/12/T12004.

I. Mor, D. Vartsky, V. Dangendorf, K. Tittelmeier, M.B. Goldberg, D. Bar and M. Brandis, J. Instrum., 12, C12022 (2017). https://doi.org/10.1016/j.nima.2018.02.113.

P. Roy, K. Banerjee, A.K. Saha, C. Bhattacharya, J.K. Meena, P. Bhaskar, S. Mukhopadhyay and S. Bhattacharya, Nucl. Instrum. Meth. Phys. Res. A 901, 198 (2018). https://doi.org/10.1016/j.nima.2018.06.007.

PL. Pujol and J.A. Sanchez-Cabeza, J. Radioanal. Nucl. Chem., 242, 391 (1999). https://doi.org/10.1007%2FBF02345568.

A. Srivastava, V. Tuli and U.W. Scherer, Radiochim. Acta, 106, 787 (2018). https://doi.org/10.1515/ract-2017-2848.

R. Broda, K. Małetka, T. Terlikowska and P. Cassette, Appl. Rad. Isot., 56, 285 (2002). https://doi.org/10.1016/S0969-8043(01)00202-0.

F. Verrezen, H. Loots and C. Hurtgen, Appl. Rad. Isot., 66, 1038 (2008). https://doi.org/10.1016/j.apradiso.2008.02.050.

S.P.D. Bhade, P.J. Reddy, S. Anilkumar, R.K. Singhal and D.D.J. Rao,. Radioanal. Nucl. Chem., 315, 13 (2018). https://doi.org/10.1007/s10967-017-5643-x.

H. Kafa, J.T.W. Wang, N. Rubio, K. Venner, G. Anderson, E. Pach, B. Ballesteros, J.E. Preston, N.J. Abbott and K.T. Al-Jamal, Biomaterials 53, 437 (2015). https://doi.org/10.1016/j.biomaterials.2015.02.083.

C.C. Wang, M. Seidaliev and A. Mandapaka, Health Phys., 94, 440 (2008). https://doi.org/10.1097/01.HP.0000300493.53385.5d.

F.D. Becchetti, R.S. Raymond, R.O. TorresIsea, A. Di Fulvio, S.D. Clarke, S.A. Pozzi and M. Febbraro, Nucl. Instrum. Meth. Phys. Res. A 820, 112 (2016). https://doi.org/10.1016/j.nima.2016.02.058

 

Issue
 
 
How to Cite
Hector Rene Vega-Carrillo; Martha Isabel Escalona-Llaguno; Luis Hernandez-Adame; Sergio M. Sarmiento-Rosales; Claudia A. Márquez-Mata; Guillermo E. Campillo-Rivera; V.P. Singh; Teodoro Rivera-Montalvo; Segundo Agustin Martínez-Ovalle. Response to Neutrons and γ-Rays of Two Liquid Scintillators. J. Nucl. Phy. Mat. Sci. Rad. A. 2019, 6, 171-178.
 

On the Role of Large Nuclear Gravity in Understanding Strong Coupling Constant, Nuclear Stability Range, Binding Energy of Isotopes and Magic proton numbers – A Critical Review

 

  • U.V.S. Seshavatharam
    Honorary faculty, I-SERVE, Survey no-42, Hitech city, Hyderabad-84,Telangana, India
  • S. Lakshminarayana
    Dept. of Nuclear Physics, Andhra University, Visakhapatnam-03, AP, India.
Keywords: Strong nuclear gravity, nuclear elementary charge, strong coupling constant, nuclear stability range, binding energy of isotopes, magic proton numbers

Abstract

With reference to our earlier published views on large nuclear gravitational constant Gs, nuclear elementary charge es and strong coupling constant αs ≅ e/es 2, in this paper, we present simple relations for nuclear stability range, binding energy of isotopes and magic proton numbers. Even though ‘speculative’ in nature, proposed concepts are simple to understand, easy to implement, result oriented, effective and unified. Our proposed model seems to span across the Planck scale and nuclear scale and can be called as SPAN model (STRANGE* physics of atomic nucleus).

 

References

K.Tennakone, Phys. Rev. D 10, 1722 (1974).

J. J. Perng, Nuovo Cimento. Lettere, Serie 2, Vol. 23, N. 15, 552 (1978).

A. Salam and C. Sivaram, Modern Physics Letters A, 8 (4): 321 (1993). https://doi.org/10.1142/S0217732393000325.

A. Salam and J. Strathdee, Physical Review D 18, 4596 (1978). https://doi.org/10.1103/PhysRevD.18.4596.

C. Sivaram and K.P. Sinha, Physical Review D. 16 (6): 1975 (1977). https://doi.org/10.1103/PhysRevD.16.1975

C. Sivaram and K.P. Sinha, Phys. Rep., Vol. 51, 113 (1979).

C. Sivaram et al., Preprint, arXiv:1402.5071 (2013)

E. Recami and V. Tonin-Zanchin, Found. Phys. Lett., Vol. 7(1), 85 (1994).

E. Recami et al., APH N.S. Heavy Ion Physics 10 345 (1999).

Raut Usha and K.P. Shina, Proceedings of the Indian Academy of Sciences Part A: Physical Sciences, 49 (2), 352 (1983).

V. de Sabbata and C. Sivaram, IL Nuovo Cimento, Vol. 101A, N. 2, 273 (1989).

Roberto Onofrio, EPL 104, 20002 (2013)

O.F. Akinto and Farida Tahir, arXiv:1606.06963v3 (2017)

T.R. Mongan, CoGeNT and DAMA/LIBRA. arXiv:0706.3050v3 (2011)

J. Dufour, J. of condensed matter nuclear science, Vol. 1, 47 (2007).

R.L. Oldershaw, Astrophysics and Space Science, Vol. 311, N. 4, 431 (2007). https://doi.org/10.1007/s10509-007-9557-x.

R.L. Oldershaw, Journal of Cosmology, Vol. 6, 1361 (2010).

R.A. Stone, Progress in Physics, Vol. 2, 19 (2010).

Sergey G. Fedosin, Hadronic Journal, Vol. 35, No. 4, 349 (2012).

S.I. Fisenko, M.M.Beilinson and B.G.Umanov, Physics Letters A, Volume 148, Issues 8-9, 405 (1990).

Seshavatharam U.V.S & Lakshminarayana S, Progress in Physics, vol. 3, 31 (2010). https://doi.org/10.20944/preprints201810.0053.v2.

U.V.S. Seshavatharam & S. Lakshminarayana, Proceedings of the DAE-BRNS Symp. On Nucl. Phys. 60, 118 (2015).

U.V.S. Seshavatharam and S. Lakshminarayana, Journal of Nuclear Sciences, Vol. 4, No.2, 31 (2017). https://doi.org/10.1501/nuclear_0000000024.

U.V.S. Seshavatharam and S.Lakshminarayana, To be appeared in the proceedings of ICNPAP conference, October, 2018, Centre for Applied Physics, Central University of Jharkhand, Ranchi, India.

U.V.S. Seshavatharam and S.Lakshminarayana, To be appeared in the proceedings of ICNPAP conference, October, 2018, Centre for Applied Physics, Central University of Jharkhand, Ranchi, India.

U.V.S. Seshavatharam and S.Lakshminarayana, Proceedings of the DAE-BRNS Symp. On Nucl. Phys. 62, 106 (2017).

U.V.S. Seshavatharam and S.Lakshminarayana, Materials Today: 3/10PB, Proceedings 3 pp. 3976-3981 (2016).

U.V.S. Seshavatharam and S.Lakshminarayana, Journal of Nuclear Physics, Material Sciences, Radiation and Applications Vol-4, No-1, 1-19, (2017).

U.V.S. Seshavatharam and S.Lakshminarayana, Prespacetime Journal, Vol. 9, Issue 1, 58 (2018).

U.V.S. Seshavatharam and S.Lakshminarayana, Open Science Journal of Modern Physics. 2(5): 89 (2015).

U.V.S. Seshavatharam and S. Lakshminarayana, International Journal of Mathematics and Physics 7, No1, 117 (2016).

U.V.S. Seshavatharam and S. Lakshminarayana, Universal Journal of Physics and Application 9(5): 210 (2015).

U.V.S. Seshavatharam and S. Lakshminarayana, Universal Journal of Physics and Application 10(6): 198 (2016).

U.V.S. Seshavatharam and S. Lakshminarayana, International Journal of Physical Research, 5 (2) 104 (2017).

U.V.S. Seshavatharam and S. Lakshminarayana, Journal of Nuclear Sciences, Vol. 4, No.1, 7 (2017). https://doi.org/10.1501/nuclear_0000000024.

U.V.S. Seshavatharam & S.Lakshminarayana, Prespacetime Journal, Vol. 8, Iss. 10, 1255 (2018).

U.V.S. Seshavatharam and S.Lakshminarayana, Prespacetime Journal, Vol. 8, Iss.7, 881 (2017).

P. R. Chowdhury et al., Mod. Phys. Lett. A20, 1605 (2005).

Oganessian Yu and V.K. Utyonkov, Physical Society (Great Britain). 78, 036301 (2015)

N.Ghahramany et al., Physics of Particles and Nuclei Letters, Vol. 8, No. 2, 97 (2011)

N. Ghahramany et al., Iranian Journal of Science & Technology A3: 201 (2011).

W. D. Myers et al., Table of Nuclear Masses according to the 1994 Thomas-Fermi Model. (from nsdssd.lbl.gov).

U. V. S. Seshavatharam and S. Lakshminarayana, Prespacetime Journal, Vol. 9, Issue 7, 642 (2018).

N. Ghahramany et al., Iranian Physical Journal, 1-2, 35 (2007).

D.T. Tran et al., Nature Communications, Vol 9, Article number: 1594 (2018).

J. Fridmann et al., Nature. 435:922-924 (2005).

N. Ghahramany et al., Universal Journal of Physics and Application 1(1): 018 (213).

Ludwig Hendrik & Ruffini Remo. Journal of the Korean Physical Society. 65. (2014). https://doi.org/10.3938/jkps.65.892.

I.F. Mirabel, New Astronomy Reviews Volume 78, 1 (2017).

https://en.wikipedia.org/wiki/Neutron_star

U.V.S. Seshavatharam and S.Lakshminarayana, Proceedings of the DAE Symp. on Nucl. Phys. 59, 804 (2014).

U.V.S. Seshavatharam and S. Lakshminarayana, Frontiers of Astronomy, Astrophysics and Cosmology, Vol. 1, No. 1, 16 (2015).

A. Mitra, Foundations of Physics Letters.13: 543 (2000)

S.W. Hawking, Commun. Math. Phys. 43: 199 (1975)

C. Patrignani et al., (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update

Jonathan L. Feng et al., International Journal of Modern Physics D, Vol. 13, No. 10, 2355 (2004). https://doi.org/10.1142/S0218271804006474.

Brandenburg J. E, International Journal of Astrophysics and Space Science. Special Issue: Quantum Vacuum, Fundamental Arena of the Universe: Models, Applications and Perspectives. Vol. 2, No. 6-1, 24 (2014).

https://doi.org/10.11648/j.ijass.s.2014020601.14.

S. Bethke and G.P. Salam, Olive K.A. et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014) and 2015 update.

K. Becker, M. Becker and J.H. Schwarz, Cambridge University Press (2006)

https://aeon.co/essays/has-the-quest-for-topdown-unification-of-physics-stalled

 

Issue

 
 
How to Cite
U.V.S. Seshavatharam; S. Lakshminarayana. On the Role of Large Nuclear Gravity in Understanding Strong Coupling Constant, Nuclear Stability Range, Binding Energy of Isotopes and Magic Proton Numbers – A Critical Review. J. Nucl. Phy. Mat. Sci. Rad. A. 2019, 6, 155-169.
 

Goodness of Generalized Seniority in Even-even Sn Isotopes

 

  • Bhoomika Maheshwari
    Department of Physics, Banasthali Vidyapith, Banasthali-304022, India
Keywords: Sn isotopes, Seniority, Generalized Seniority, Isomer, B(E1), B(E2), B(E3), First excited 2 and 3- states

Abstract

Seniority has proved to be a unique and simple probe to address some of the complex issues underlying nuclear structure of nuclei close to magic numbers. An extension from the concept of seniority in single-j shell to generalized seniority in multi-j shell has recently been provided by us. We have, consequently, established new selection rules for gamma decays and discovered the new seniority isomers decaying via odd electric multipole operators. We have successfully explained the B(EL; L=1,2,3) behavior of various high spin isomers and other excited states. More specifically, we have been able to explain the long-standing puzzle of double hump in the B(E2) values for the first excited 2+ states of even-even Z=50 (Sn) isotopes. In the present paper, we review these generalized seniority calculations with emphasis on even-even Sn isotopes. We first discuss the generalized seniority results for the E1 decaying 13- isomers and E2 decaying 10+, 15- isomers, and then present the cases of first-excited 2+ and 3- states. The generalized seniority proves out to be a reasonably good quantum number. The significance of configuration mixing is found to be true. The calculated results has been validated till high seniority v=4 states and expected to be valid for higher seniority v=6,… states also.

References

G. Racah, Physical Review, 63, 367 (1943). https://doi.org/10.1103/PhysRev.63.367

G. Racah, L. Farkas Memorial Volume, 294 (1952).

B. H. Flowers, Proceedings of the Royal Society (London) A, 212, 248 (1952). https://doi.org/10.1098/rspa.1952.0079.

A. K. Kerman, Annals of Physics (NY), 12, 300 (1961). https://doi.org/10.1016/00034916(61)90008-2.

K. Helmers, Nuclear Physics., 23, 594 (1961). https://doi.org/10.1016/0029-5582(61)90285-1.

I. Talmi (1993), Simple Models of Complex Nuclei, Harwood Academic.

R. F. Casten (1990), Oxford University Press.

D. J. Rowe, and J. L. Wood (2010), World Scientific Publishing, Singapore. https://doi.org/10.1142/6209.

I. Talmi, Advances in Nuclear Physics, 27, 1 (2003), and the references therein. https://doi.org/10.1007/0-306-47916-8_1.

A. Arima and M. Ichimura, Progress of Theoretical Physics, 36, 296 (1966). https://doi.org/10.1143/PTP.36.296.

I. Talmi, Nuclear Physics A, 172, 1 (1971). https:// doi.org/10.1016/0375-9474(71)90112-6.

S. Shlomo, and I. Talmi, Nuclear Physics A, 198, 82 (1972). https://doi.org/10.1016/03759474(72)90773-7.

R. Arvieu, and S. A. Moszokowski, Physical Review, 145, 830 (1966). https://doi.org/10.1103/PhysRev.145.830.

I. M. Green, and S. A. Moszokowski, Physical Review, 139, B790 (1965). https://doi.org/10.1103/PhysRev.139.B790.

B. Maheshwari,and A. K. Jain, Physics Letters B, 753, 122 (2016). https://doi.org/10.1016j.physletb.2015.11.079.

B. Maheshwari, A. K. Jain, and B. Singh, Nuclear Physics A, 952, 62 (2016). https://doi.org/10.1016j.nuclphysa.2016.04.021.

A. K. Jain and B. Maheshwari, Nuclear Physics Review, 34, 73 (2017). https://doi.org/10.11804/NuclPhysRev.34.01.073.

A. K. Jain and B. Maheshwari, Physica Scripta 92, 074004 (2017). https://doi.org/10.1088/14024896/aa7353.

B. Maheshwari, S. Garg, and A. K. Jain, PramanaJournal of Physics (Rapid Comm.) 89, 75 (2017).

R. Broda et al., Physical Review Letters, 68, 1671 (1992) and references therein. https://doi.org/10.1103/PhysRevLett.68.1671

C. T. Zhang et al., Physical Review C, 62, 057305 (2000) and references therein.

A. Astier et al ., Physical Review C, 85, 054316 (2012). https://doi.org/10.1103/PhysRevC.62.057305.

L. W. Iskra et al ., Physical Review C, 89, 044324 (2014). https://doi.org/10.1103/PhysRevC.89.044324.

Evaluated Nuclear Structure Data File: http://www.nndc.bnl.gov/ensdf/

I. O. Morales, P. Van Isacker, and I. Talmi, Physical Review B, 703, 606 (2011). https://doi.org/10.1016/j.physletb.2011.08.033.

A. Ansari, Physical Review B, 623, 37 (2005). https://doi.org/10.1016/j.physletb.2005.07.031

A. Ansari, and P. Ring, Physical Review C, 74, 054313 (2006). https://doi.org/10.1103/PhysRevC.74.054313.

T. Back et al., Physical Review C, 87, 031306(R) (2013). https://doi.org/10.1103/PhysRevC.87.031306.

N. Lo Iudice, Ch. Stoyanov, and D. Tarpanov, Physical Review C, 84, 044314 (2011).

H. Jiang, Y. Lei, G. E. Fu, Y. M. Zhao, and A. Arima, Physical Review C, 86, 054304 (2012). https://doi.org/10.1103/PhysRevC.86.054304.

A. Jungclaus et al., Physical Review B, 695, 110 (2011). https://doi.org/10.1016/j.physletb.2010.11.012.

A. Ekstrom et al., Physical Review Letters, 101, 012502 (2008).https://doi.org/10.1103/PhysRevLett.101.012502.

P. Doornenbal et al., Physical Review C, 90, 061302(R) (2014). https://doi.org/10.1103/PhysRevC.90.061302.

D. C. Radford et al., Nuclear Physics A, 746, 83 (2004). https://doi.org/10.1016/j.nuclphysa.2004.09.056.

J. M. Allmond et al., Physical Review C, 84,061303(R) (2011). https://doi.org/10.1103/PhysRevC.84.061303.

A. Banu et al., Physical Review C, 72, 061305(R) (2005). https://doi.org/10.1103/PhysRevC.72.061305.

J. Cederkall et al., Physical Review Letters, 98, 172501 (2007). https://doi.org/10.1103/PhysRevLett.98.172501.

C. Vaman et al., Physical Review Letters, 99, 162501 (2007).

P. Doornenbal et al., Physical Review C, 78,031303(R) (2008). https://doi.org/10.1103/PhysRevC.78.031303.

R. Kumar et al., Physical Review C, 81, 024306 (2010). https://doi.org/10.1103/PhysRevC.81.024306.

G. Guastalla et al., Physical Review Letters, 110, 172501 (2013). https://doi.org/10.1103/PhysRevLett.110.172501.

V. M. Bader et al., Physical Review C, 88, 051301(R) (2013).https://doi.org/10.1103/PhysRevC.88.051301.

J. M. Allmond et al., Physical Review C, 92, 041303(R) (2015). https://doi.org/10.1103/PhysRevC.92.041303

N. Orce et al., Physical Review C, 76, 021302(R) (2007). https://doi.org/10.1103/PhysRevC.76.021302.

B. Pritychenko, M. Birch, B. Singh, and M. Horoi, Atomic Data and Nucl. Data Tables, 107, 1 (2016). https://doi.org/10.1016/j.adt.2015.10.001

W. Nazarewicz et al., Nuclear Physics A, 429,269(1984).https://doi.org/10.1016/03759474(84)90208-2.

P. D. Cottle, Physical Review C, 42, 1264 (1990). https://doi.org/10.1103/PhysRevC.42.1264

T. Kibedi, and R. H. Spear, Atomic Data and Nucl. Data Tables, 80, 35 (2002). https://doi.org/10.1006/adnd.2001.0871

 

Bhoomika Maheshwari. Goodness of Generalized Seniority in Even-Even Sn Isotopes. J. Nucl. Phy. Mat. Sci. Rad. A. 2019, 6, 147-154.

 

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...