Monday, 7 September 2020

Behavior of Poly-A onto Kaolin

 

  • María Guadalupe Torres-Duque
    Faculty of Higher Education Iztacala, National Autonomous University of Mexico. Avenida de los Barrios Number 1, Colonia Los Reyes Iztacala, Tlalnepantla, State of Mexico
  • Claudia Camargo-Raya
    Institute of Nuclear Sciences, National Autonomous University of Mexico. Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, Mexico City
  • Alicia Negrón-Mendoza
    Institute of Nuclear Sciences, National Autonomous University of Mexico. Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, Mexico City
  • Sergio Ramos-Bernal
    Institute of Nuclear Sciences, National Autonomous University of Mexico. Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, Mexico City
Keywords: Poly-A, Clays, Kaolin, Chemical evolution

Abstract

A combination of geochemical variables is necessary to explain the origin of life on Earth. Thus, in this work the sorption of Poly-A on a clay mineral (kaolinite) was studied to get an insight about the sorption capacity at different times and pH values, as well as to confirm the capabilities of the clay to protect the sorbate from an external source of ionizing radiation. Poly-A presented a high percentage of sorption in the clay, especially in acidic environments, and this percentage sharply decrease in alkaline media. On the other hand, Poly-A’s recovery was higher in the system with clay, confirming its protection role.

 

References

A. Negrón-Mendoza, S. Ramos-Bernal, M. Colin-García and A. Heredia, Radiation & applications 1, 159 (2016). https://doi.org/10.21175/RadJ.2016.03.030

A. I. Oparin, The origin of life (MacMillan, New York, 1924), p. 109.

S. Chang and N. Lahav, J. Mol. Evol. 8, 357 (1976). https://doi.org/10.1007/BF01739261

J. D. Bernal, The Physical Basis of Life (Routledge y Kegan Paul, London, 1951), p. 364.

W. Gilbert, Nature 319, 618 (1986). https://doi.org/10.1038/319618a0

P. G. Higgs and N. Lehman, Nat. Rev. Genet. 16, 1 (2015). https://doi.org/10.1038/nrg3841

S. Woodson and S. Mount, in The RNA world, edited by R. F. Gesteland, T. R. Cech and J. F. Atkins (Cold Spring Harbor Laboratory Press, USA, 1999), p. 709. https://doi.org/10.1101/cshperspect.a006742

H. Hashizume, Clay Minerals in Nature (Intech Open, London, 2012), p. 197.

H. H. Murray, M. S. Prasad and K. J. Reid, Appl. Clay Sci. 6, 87 (1991). https://doi.org/10.1016/0169-1317(91)90001-P

L. López-Esquivel, A. Negrón-Mendoza, F. Mosqueira and S. Ramos-Bernal, Nucl. Instrum. Meth. A 619, 1 (2010).

J. Ramírez-Carreón, S. Ramos-Bernal and A. Negrón-Mendoza, J Radioanal. Nucl. Chem. 318, 2435 (2018). https://doi.org/10.1007/s10967-018-6264-8

N. Palomino-Aquino and A. Negrón-Mendoza, AIP Publishing 1671, 030007 (2015). https://doi.org/10.1063/1.4927196

L. D. Perezgasga, F. G. Mosqueira, A. Negrón-Mendoza, L. De Pablo-Galán and A. Serrato-Díaz, Orig. Life Evol. Biospheres 35, 91 (2005). https://doi.org/10.1007/s11084-005-0199-0

M. M. Mortland, Advances in Agronomy 22, 75 (1970). https://doi.org/10.1016/S0065-2113(08)60266-7

D. Tunega, G. Haberhauer, M. H. Gerzabek, H. Lischka, Langmuir 181, 139 (2002). https://doi.org/10.1021/la010914e

Negrón-Mendoza and S. Ramos-Bernal, The role of clays in the origin of life. Origins: genesis, evolution and diversity of life (Kluwer Academic Publishers, USA, 2004), 181–194.

E. T. Degens, G. R. Harvey and K. Mopper, Chemical Geology 9, 1 (1972). https://doi.org/10.1016/0009-2541(72)90038-1

 

Issue
 
 
How to Cite
María Guadalupe Torres-Duque; Claudia Camargo-Raya; Alicia Negrón-Mendoza; Sergio Ramos-Bernal. Behavior of Poly-A onto Kaolin. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 139-143.
 

A Data Mining Perspective of XRF Elemental Analysis from Pueblo People’s Pottery

 

  • M. Castro-Colin
    Bruker AXS GmbH, Karlsruhe-76131, Germany
  • E. Ramirez-Homs
    Department of Physics, El Paso, TX-79912, USA
  • J. A. López
    Department of Physics, El Paso, TX-79912, USA
Keywords: X-ray fluorescence, Radiation, Spectrometry, Cluster Analysis, Data Mining, Archaeology, Provenance, Nondestructive testing analysis

Abstract

Hierarchichal clustering was used to identify elemental signatures in artifacts attributed to the Pueblo peoples. The artifacts in this study are pottery samples found at different sites in the state of New Mexico, USA. Three methods were applied: complete, average, and Ward. Their corresponding cophenetic correlation coefficients were used to contrast the three methods. Elemental characterization was only based on X-ray fluorescence excitation from a portable spectrometer with silver anode. The elemental correlations here disclosed by data mining techniques are expected to guide further archaelogical studies and assist experts in the assessment of provenance and historical ethnographic studies.

 

References

E. Ben-Yosef, et al., PNAS 114, 2160 (2009). https://doi.org/10.1073/pnas.1615797114

E. Boaretto, et al., PNAS 16, 9595 (2017). https://doi.org/10.1073/pnas.0900539106

G. Bronitsky., Adv. Archaeological Method and Theory 9, 209 (1986). https://doi.org/10.1016/B978-0-12-003109-2.50008-8

A. Chudin, K. Ushanova, and E. Lähderanta., Mediterranean Archaeology and Archaeometry 19, 25 (2019). https://doi.org/10.5281/zenodo.2585948

J. Diamond. Collapse: how societies choose to fail or succeed. Ch. 4. pp. 145. Penguin Group, New York, USA (2005).

B. P. Dutton. “American Indians of the Southwest”. Ch. 2, pp. 9-62. U. of New Mexico Press, Albuquerque, USA (1983).

M. Holgersson., Pattern recognition 10, 287 (1978). https://doi.org/10.1016/0031-3203(78)90038-9

A. Iordanidis, J. Garcia-Guinea and G. Karamitrou-Mentessidi., Mat. Characterization 60, 292 (2009). https://doi.org/10.1016/j.matchar.2008.08.001

Y. Konomata, et al., Antiquity 93, 1 (2019). https://doi.org/10.15184/aqy.2019.56

I. Kuleff and R. Djingova., Revue d’Archéométrie 20, 57 (1996).

I. Liritzis, N. Zacharias, I. Papageorgiou, A. Tsaroucha and E. Palamar., Studia Antiqua et Archaelogica 24, 31 (2018).

F. Murtagh and P. Contreras., Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2, 86 (2012). https://doi.org/10.1002/widm.53

P. S. Nayak and B. K. Singh, Bull. Mater. Sci. 30, 235 (2007). https://doi.org/10.1007/s12034-007-0042-5

R. Norstrom, Graduate Thesis and Dissertations, U. of South Florida, January 2014 http://scholarcommons.usf.edu/etd/5285.

C. Papachristodoulou, et al., Anal. Chimica Acta 573, 347 (2006). https://doi.org/10.1016/j.aca.2006.02.012

J. B. Phipps, Systematic Zoology 20, 306 (1971). https://doi.org/10.2307/2412343

P. M. Rice and M. E. Saffer, J. Arc. Sci. 9, 395 (1982). https://doi.org/10.1016/0305-4403(82)90045-0

F. J. Rohlf and D. L. Fisher, Systematic Zoology 17, 407 (1968). https://doi.org/10.1093/sysbio/17.4.407

R. R. Sokal and S. J. Rohlf, Taxon 11, 33 (1962). https://doi.org/10.2307/1217208

V. A. Solé, E. Papillon, M. Cotte, Ph. Walter and J. Susini, Spectrochim. Acta Part B 62, 63 (2007). https://doi.org/10.1016/j.sab.2006.12.002

A. Sturz, M. Itoh, and S. Smith, Proceedings of the Ocean Drilling Program, Scientific Results 158, 277 (1998). https://doi.org/10.2973/odp.proc.sr.158.221.1998

R. H. Tykot, Appl. Spectroscopy 70, 42 (2015). https://doi.org/10.1177/0003702815616745

U. Wagner, et al., Radiation in Art and Archaeometry, Eds. D. C. Creagh and D. A Bradley. Ch. 18, 417-443. Elsevier Science, Amsterdam, The Netherlands (2000).

S. Watanabe, et al., Spec. Acta Part A: Mol. and Biomol. Spectroscopy 71, 1261 (2008). https://doi.org/10.1016/j.saa.2008.03.034.

J. B. Weems (1903). Chemistry of Clays. Iowa Geological Survey Annual Report, 14, 319–346.

A. L. Wilson, J. Archaeological Sci. 5, 219 (1978). https://doi.org/10.1016/0305-4403(78)90041-9

 

 

How to Cite

M. Castro-Colin; E. Ramirez-Homs; J. A. López. A Data Mining Perspective of XRF Elemental Analysis from Pueblo People’s Pottery. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 129-138.

Radiation Induced Reactions of Succinic Acid in Aqueous Solution: An Agent-Based Model

 

  • Ana Leonor Rivera
    Institute of Nuclear Sciences, National Autonomous University of Mexico, Coyoacan-04510, CDMX, Mexico; Center for Complexity Sciences, National Autonomous University of Mexico
  • Sergio Ramos-Beltran
    Institute of Nuclear Sciences, National Autonomous University of Mexico, Coyoacan-04510, CDMX, Mexico
  • Alicia Negrón-Mendoza
    Institute of Nuclear Sciences, National Autonomous University of Mexico, Coyoacan-04510, CDMX, Mexico
Keywords: Radiation induced chemical reactions, Succinic Acid, Kinetics of reactions, Agent-based model

Abstract

An approach to studying the formation of critical bio-organic compounds in the early Earth is to simulate in the laboratory possible processes that may occur in primitive scenarios. In this context, it can be studied the evolution of succinic acid in an aqueous media exposed to gamma radiation, as starting material produced more complex prebiotic molecules. To describe the products generated by the interaction of the different elements under radiation, there is a mathematical model that considers chemical reactions as nonlinear ordinary differential equations based on the mass balance of all the species, that has been implemented here by an agent-based model. In this simulation, each chemical species involved is considered as an agent that can interact with other species with known reaction rates, and the radiation is taken as a factor that promotes product formation. The results from the agentbased model are compared with the molar concentrations of succinic acid, and its products obtained in the lab. Simulation shows the exponential decomposition of succinic acid due to gamma radiation at room temperature in agreement with the laboratory model.

 

References

A. Negrón-Mendoza and C. Ponnamperuma, Photochem. Photobiol. 36, 595 (1982). https://doi.org/10.1111/j.1751-1097.1982.tb04421.x

A. Negrón-Mendoza, G. Albarran, S. Ramos, and E. Chacon, J. Biol. Phys. 20, 71 (1995). https://doi.org/10.1007/BF00700422

M. Colín-García, A. Negrón-Mendoza, and S. Ramos-Bernal, Astrobiol. 9, 279 (2009). https://doi.org/10.1089/ast.2006.0117

S. Castillo, A. Negrón-Mendoza, Z. D. Draganic, and I. G. Draganic, Rad. Phys. Chem. 26, 437 (1985). https://doi.org/10.1016/0146-5724(85)90232-8

J. Cruz-Castañeda, A. Negrón-Mendoza, D. Frías, M. Colín-García, et al., J. Radioanal. Nuc. Chem. 304, 219 (2015). https://doi.org/10.1007/s10967-014-3711-z

S. L. Miller and H. C. Urey, Science 130, 245 (1959). https://doi.org/10.1126/science.130.3370.245

G. U. Yuen and K. A. Kvenvolden, Nature 246, 301 (1973). https://doi.org/10.1038/246301a0

J. G. Lawless, B. Zeiman, W. E. Pereira, R. E. Summons and A. M. Duffield, Nature 251, 40 (1974). https://doi.org/10.1038/251040a0

A. Negrón-Mendoza and C. Ponnamperuma, Origins of Life 279, 191 (1976). https://doi.org/10.1007/BF00926937

G. Sanchez-Mejorada, D. Frias, A. Negrón-Mendoza and S. Ramos-Bernal, Radiat. Meas. 43, 287 (2008). https://doi.org/10.1016/j.radmeas.2007.11.038

V. P. Zhdanov, Surface Sci. Rep. 45, 231 (2002). https://doi.org/10.1016/S0167-5729(01)00023-1

A. L. Rivera, S. Ramos-Bernal and A. Negrón-Mendoza, J. Nucl. Phys. Mat. Sci. Rad. A. 6, 93 (2018). https://doi.org/10.15415/jnp.2018.61016

A. L. Rivera, S. Ramos-Bernal, and A. Negrón-Mendoza, J. Nucl. Phys. Mat. Sci. Rad. A. 5, 15 (2017). https://doi.org/10.15415/jnp.2017.51002

A. L. Rivera, S. Ramos-Bernal, and A. Negrón-Mendoza, J. Nucl. Phys. Mat. Sci. Rad. A. 4, 149 (2016). https://doi.org/10.15415/jnp.2016.41015

I. G. Draganic and Z. D. Draganic, The radiation chemistry of water. (Academic Press, New York, pp 204-206, 1971).

A. L. Meléndez-López, S. Ramos-Bernal, and M. L. Ramírez-Vázquez, AIP Conf. Proc. 1607, 111 (2014). https://doi.org/10.1063/1.4890710

A. Negrón-Mendoza, M. Colín-García, and S. Ramos-Bernal, J. Radioanal. Nuc. Chem. 318, 2279 (2018). https://doi.org/10.1007/s10967-018-6197-2

 

Issue
 
 
How to Cite
Ana Leonor Rivera; Sergio Ramos-Beltran; Alicia Negrón-Mendoza. Radiation Induced Reactions of Succinic Acid in Aqueous Solution: An Agent-Based Model. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 117-121.
 

PADC-NTM Applied in 7Li+Pb at 31 MeV Reaction Products Study

 

  • M. Cinausero
    National Laboratories of Legnaro, I-35020 Legnaro (Pd), Italy
  • A. M. Sajo-Castelli
    Nuclear Physics Laboratory, Simón Bolívar University, Caracas 1080A, Venezuela
  • L. Sajo-Bohus
    Nuclear Physics Laboratory, Simón Bolívar University, Caracas 1080A, Venezuela
  • J. Palfalvi
    HAS KFKI Atomic Energy Research Institute POB 49, H-1525 Budapest, Hungary
  • G. Espinosa
    Institute of Physics, National Autonomous University of Mexico, Coyoacán, México City
Keywords: Nuclear tracks, PADC, 7Li Pb reaction products identification, 8pLP, Track spectrum unfolding

Abstract

Passive nuclear track methodology (NTM) is applied to study charged particles products of the reaction 7Li+Pb at ~ 31 MeV. It is a contribution to the 8pLP Project (LNL-INFN-Italy) in where we show an alternative approach to register charged particle from reaction fragments by PADC detection. The main advantage is that the passive system integrates data over the whole experiment and has its importance for low rate reaction processes. Reaction products as well as scattered beam particles are determined from track shape analysis. Some limitations are inherent to NTM since a priori knowledge is required to correlate track size distribution given by each type of particle emerging from the target. Results show that the passive technique gives useful information when applied in reaction data interpretation for a relatively large range of particle types.

 

References

E. Fioretto, IEEE Transactions on Nuclear Science 44, 1017 (1997). https://doi.org/10.1109/23.603796

J. K. Pálfalvi, L. Sajó-Bohus, Solid State Phenomena 238, 16 (2015). https://doi.org/10.4028/www.scientific.net/SSP.238.16

M. Barbui, D. Fabris, S. Moretto, G. Nebbia, P. Nemeth, J.K. Palfalvi, S. Pesente, G. Prete, L. Sajo-Bohus and G. Viesti, Radiation Measurements 44, 857 (2009). https://doi.org/10.1016/j.radmeas.2009.10.048

L. Sajó-Bohus, J.K. Pálfalvi, O. Arevalo, E.D. Greaves, P. Németh, D. Palacios, J. Szabo and I. Eördögh Radiation Measurements 40, 442 (2005). https://doi.org/10.1016/j.radmeas.2005.02.011

B. Dörschel, D. Hermsdorf and K. Kadner, Radiation Measurements 35, 183 (2002). https://doi.org/10.1016/S1350-4487(02)00049-5

J.K. Palfalvi, L. Sajo-Bohus and S. A. Durrani, Radiation Protection Symposium Obergurl/Tyrol 28-30- April, Proceedings 2, 271 (1993).

N. Rozlosnik, L. Sajo-Bohus, C. Birattari, E. Gadioli, L.P. Biró and K. Havancsák, Nanotechnology 8, 32 (1997). https://doi.org/10.1088/0957-4484/8/1/008

Z. Lounis, S. Djeffal, K. Morsli, M. Alla, Nucl. Instr. Meth. Phys. Res. B 179, 543 (2001). https://doi.org/10.1016/S0168-583X(01)00601-2

W. Gonzalez et al., Journal of Nuclear Physics, Material Sciences, Radiation and Applications 2, 83 (2014). https://doi.org/10.15415/jnp.2014.21006

R Development Core Team, 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL. http://www.R-project.org. Accessed August 28, 2019. 

 

 

How to Cite
M. Cinausero; A. M. Sajo-Castelli; L. Sajo-Bohus; J. Palfalvi; G. Espinosa. PADC-NTM Applied in 7Li+Pb at 31 MeV Reaction Products Study. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 109-115.

 

Effects of Gamma Irradiation on Curcumin Effects of Gamma Irradiation on Curcumin

 

  • E. Islas-Ortiz
    Faculty of Chemistry, National Autonomous University of Mexico, UNAM; Master’s and Doctoral Program in Chemical Sciences, UNAM University Cd., México-04510, D. F. México
  • E. O. Reyes-Salas
    Faculty of Chemistry, National Autonomous University of Mexico, UNAM
  • A. Negrón-Mendoza
    Institute of Nuclear Sciences, National Autonomous University of Mexico, UNAM
  • A. L. Meléndez-López
    Institute of Geology, National Autonomous University of Mexico, UNAM
  • G. Reyes-García
    Faculty of Chemistry, National Autonomous University of Mexico, UNAM; Master’s and Doctoral Program in Chemical Sciences, UNAM University Cd., México-04510, D. F. México
  • J. A. Cruz- Castañeda
    Institute of Nuclear Sciences, National Autonomous University of Mexico, UNAM
  • E. Madrigal-Lagunas
    Faculty of Chemistry, National Autonomous University of Mexico, UNAM
Keywords: Electrochemical, Curcumin, Gamma Irradiation

Abstract

In this study, remnants concentrations of curcumin in Curcuma longa (organic turmeric powder) were determined after it was exposed to irradiation doses of 1, 2 and 3 kGy. Curcumin analysis was performed using the analyte-sensitive impulse differential polarography technique (LOD: 0.621 ppm and LOQ: 2.130 ppm). The results obtained showed a decreasing concentration of curcumin as a function of the irradiation dose. This reduction is low in terms of affecting the product’s quality with respect to its concentration.

 

References

Molins, R. Food irradiation: Principles and applications. edited by Wiley/Interscience (New York, 2001).

J. Farkas, Trends in Food Science & Technology 17, 148 (2006). https://doi.org/10.1016/j.tifs.2005.12.003

A. Benavides, R. E. Hernández, H. Ramirez, and A. Sandoval. Tratado de Botánica Económica Moderna. Universidad Autónoma Agraria Antonio Narro. Buenavista, Saltillo, Coah., México (2010).

F. Tayyem, D. Heath, K. Al-Delaimy and L. Rock, Nutrition and Cancer 55, 126 (2006). https://doi.org/10.1207/s15327914nc5502_2

G. Reyes-Garcia, Q. thesis, UNAM, 2019. 

 

Issue
 
 
How to Cite
E. Islas-Ortiz; E. O. Reyes-Salas; A. Negrón-Mendoza; A. L. Meléndez-López; G. Reyes-García; J. A. Cruz- Castañeda; E. Madrigal-Lagunas. Effects of Gamma Irradiation on Curcumin. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 103-107.
 

 

Effect of Laser Radiation on Biomolecules

  E. Prieto Institute of Physical Sciences-UNAM, Avenida University 1001, Chamilpa, Cu...